精英家教网 > 高中数学 > 题目详情
6.已知函数f(x)=2sin$\frac{πx}{3}$-4sin2$\frac{πx}{6}$,x∈R.
(1)求f(x)的最小正周期;
(2)求f(x)的区间[$\frac{1}{4}$,$\frac{11}{4}$]上的最大值和最小值.

分析 (1)利用三角函数恒等变换的应用化简函数解析式可得f(x)=2$\sqrt{2}$sin($\frac{πx}{3}$+$\frac{π}{4}$)-2,根据三角函数周期公式即可求值得解;
(2)由x∈[$\frac{1}{4}$,$\frac{11}{4}$],可求$\frac{πx}{3}$+$\frac{π}{4}$∈[$\frac{π}{3}$,$\frac{7π}{6}$],利用正弦函数的图象和性质即可得解.

解答 (本题满分为13分)
解:(1)∵f(x)=2sin$\frac{πx}{3}$-4sin2$\frac{πx}{6}$
=2sin$\frac{πx}{3}$-2(1-cos$\frac{πx}{3}$)
=2$\sqrt{2}$(sin$\frac{πx}{3}$cos$\frac{π}{4}$+cos$\frac{πx}{3}$sin$\frac{π}{4}$)-2
=2$\sqrt{2}$sin($\frac{πx}{3}$+$\frac{π}{4}$)-2.…3分
∴f(x)的最小正周期T=$\frac{2π}{\frac{π}{3}}$=6.…5分
(2)∵x∈[$\frac{1}{4}$,$\frac{11}{4}$],
∴$\frac{πx}{3}$+$\frac{π}{4}$∈[$\frac{π}{3}$,$\frac{7π}{6}$],…7分
∵f(x)在区间[$\frac{1}{4}$,$\frac{3}{4}$]上是增函数,在区间[$\frac{3}{4}$,$\frac{11}{4}$]上是减函数,…9分
而f($\frac{1}{4}$)=$\sqrt{6}$-2,f($\frac{3}{4}$)=2$\sqrt{2}-2$,f($\frac{11}{4}$)=-$\sqrt{2}-2$,…11分
∴f(x)的区间[$\frac{1}{4}$,$\frac{11}{4}$]上的最大值为2$\sqrt{2}$-2,最小值为-$\sqrt{2}-2$.…13分

点评 本题主要考查了三角函数恒等变换的应用,正弦函数的图象和性质的应用,考查了数形结合思想和转化思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源:2017届浙江嘉兴市高三上学期基础测试数学试卷(解析版) 题型:选择题

已知,则“”是“”的( )

A.充分不必要条件 B.必要不充分条件

C.充要条件 D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.2015年7月9日21时15分,台风“莲花”在我国广东省陆丰市甲东镇沿海登陆,给当地人民造成了巨大的财产损失,适逢暑假,小张调查了当地某小区的100户居民由于台风造成的经济损失,将收集的数据分成[0,2000],(2000,4000],(4000,6000],(6000,8000],(8000,10000]五组,并作出如下频率分布直方图(图1):
(1)台风后居委会号召小区居民为台风重灾区捐款,小张调查的100户居民捐款情况如右下表格,在图2表格空白处填写正确数字,并说明是否有95%以上的把握认为捐款数额多于或少于500元和自身经济损失是否到4000元有关?
(2)将上述调查所得到的频率视为概率.现在从该地区大量受灾居民中,采用随机抽样方法每次抽取1户居民,抽取3次,记被抽取的3户居民中自身经济损失超过4000元的人数为ξ.若每次抽取的结果是相互独立的,求ξ的分布列,期望E(ξ)和方差D(ξ).
经济损失不超过
4000元
经济损失超过
4000元
合计
捐款超过
500元
60
捐款不超
过500元
10
合计
附:临界值表
P(K2≥k)0.100.050.025
    k2.7063.8415.024
随机量变${K^2}=\frac{{(a+b+c+d){{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.直线x+1=0的倾斜角为(  )
A.90°B.45°C.135°D.60°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在△ABC中,角A,B,C所对的边分别是a,b,c,若B=$\frac{π}{3}$,且a2-b2-c2=-$\frac{11}{7}$bc
(1)求cosC的值
(2)若a=5,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.函数f(x)=Asin(ωx-$\frac{π}{6}$)+1(A>0,ω>0)的最大值为3,其图象相邻两条对称轴之间的距离为$\frac{π}{2}$.
(1)求函数f(x)的解析式;
(2)设α∈(0,$\frac{π}{2}$),f($\frac{α}{2}$)=2,求α的值;
(3)当x∈(0,$\frac{π}{2}$]时,求f(x)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.下列求导正确的是(  )
A.($\frac{1}{x}$)′=$\frac{1}{{x}^{2}}$B.(log2x)′=$\frac{1}{xln2}$C.(3x+1)′=x•3x-1+1D.(cosx)′=sinx

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知f(x)=ax3+bx-4,若f(-2)=2,则f(2)=-10.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=log2(1+x)+log2(1-x)
(Ⅰ)求函数f(x)的定义域,并判断f(x)的奇偶性
(Ⅱ)若不等式f(x)>m的解集为空集,求实数m的取值范围.

查看答案和解析>>

同步练习册答案