分析 (1)由余弦定理可得:cosA=$\frac{{b}^{2}+{c}^{2}-{a}^{2}}{2bc}$,可得sinA=$\sqrt{1-co{s}^{2}A}$,可得cosC=-cos(A+B)=-[cosAcosB-sinAsinB].
(2)由(1)可得:sinC=$\sqrt{1-co{s}^{2}C}$,在△ABC中,由正弦定理可得:$\frac{c}{sinC}=\frac{b}{sinB}=\frac{a}{sinA}$,可得c=$\frac{asinC}{sinA}$,可得$S=\frac{1}{2}ac$sinB.
解答 解:(1)在△ABC中,由余弦定理可得:cosA=$\frac{{b}^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{11}{14}$,
∴sinA=$\sqrt{1-co{s}^{2}A}$=$\frac{5}{14}\sqrt{3}$,
∴cosC=-cos(A+B)=-[cosAcosB-sinAsinB]=-$(\frac{11}{14}×\frac{1}{2}-\frac{5\sqrt{3}}{14}×\frac{\sqrt{3}}{2})$=$\frac{1}{7}$.
(2)由(1)可得:sinC=$\sqrt{1-co{s}^{2}C}$=$\frac{4\sqrt{3}}{7}$,
在△ABC中,由正弦定理可得:$\frac{c}{sinC}=\frac{b}{sinB}=\frac{a}{sinA}$,可得c=$\frac{asinC}{sinA}$=8,
∴$S=\frac{1}{2}ac$sinB=$\frac{1}{2}×5×8×\frac{\sqrt{3}}{2}$=10$\sqrt{3}$.
点评 本题考查了正弦定理余弦定理、同角三角函数基本关系式、和差公式、三角形面积计算公式,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源:2017届浙江嘉兴市高三上学期基础测试数学试卷(解析版) 题型:选择题
已知双曲线
与抛物线
有一个公共的焦点
,且两曲线的一个交点为
,若
,则双曲线的离心率为( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{2}{3}$ | B. | 2 | C. | 4 | D. | 6 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ($\frac{1}{2}$,+∞) | B. | (-∞,2) | C. | (2,+∞) | D. | (-∞,$\frac{1}{2}$) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com