精英家教网 > 高中数学 > 题目详情

【题目】已知函数,角的终边经过点.若的图象上任意两点,且当时,的最小值为.

(1) 的值

(2)求函数上的单调递减区间;

(3)当时,不等式恒成立,求的最大值.

【答案】(1);(2);(3).

【解析】

(1)由任意角的三角函数的定义求得故可以取,再根据函数的图象的相邻的2条对称轴间的距离等于故函数的周期为由此求得的值;

(2),即可得到函数的单调减区间;

(3)因为所以不等式可得,由此可得,从而得到答案.

(1)的终边经过点.

的终边在第四象限,且

可以取

的图象上任意两点,且当时,的最小值为.

则函数的图象的相邻的2条对称轴间的距离等于故函数的周期为

解得.

(2)

解得

函数的单调递减区间是

,得减区间.

(3),则

由不等式可得,则有

解得

的最大值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设a,b∈R,ab≠0,给出下面四个命题:①a2+b2≥﹣2ab;② ≥2;③若a<b,则ac2<bc2;④若 .则a>b;其中真命题有(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=Asin(ωx+φ)满足:f( +x)=﹣f( ﹣x),且f( +x)=f( ﹣x),则ω的一个可能取值是(
A.2
B.3
C.4
D.5

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知三角形的顶点为A(2,4),B(0,-2),C(-2,3),求:

(1)直线AB的方程;

(2)AB边上的高所在直线的方程;

(3)AB的中位线所在的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列和等比数列满足

1的通项公式;

2求和:

【答案】1;(2

【解析】试题分析:(1)根据等差数列 列出关于首项公差的方程组,解方程组可得的值,从而可得数列的通项公式;(2)利用已知条件根据题意列出关于首项公比 的方程组,解得的值求出数列的通项公式,然后利用等比数列求和公式求解即可.

试题解析:(1)设等差数列{an}的公差为d. 因为a2+a4=10,所以2a1+4d=10.解得d=2.

所以an=2n1.

(2)设等比数列的公比为q. 因为b2b4=a5,所以b1qb1q3=9.

解得q2=3.所以.

从而.

型】解答
束】
18

【题目】已知命题:实数满足,其中;命题:方程表示双曲线.

(1)若,且为真,求实数的取值范围;

(2)若的充分不必要条件,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】把参加某次铅球投掷的同学的成绩(单位:米)进行整理,分成以下6个小组:[5.25,6.15),[6.15,7.05),[7.05,7.95),[7.95,8.85),[8.85,9.75),[9.75,10.65],并绘制出频率分布直方图,如图所示是这个频率分布直方图的一部分.已知从左到右前5个小组的频率分别为0.04,0.10,0.14,0.28,0.30,第6小组的频数是7.规定:投掷成绩不小于7.95米的为合格.

(1)求这次铅球投掷成绩合格的人数;

(2)你认为这次铅球投掷的同学的成绩的中位数在第几组?请说明理由;

(3)若参加这次铅球投掷的学生中,有5人的成绩为优秀,现在要从成绩优秀的学生中,随机选出2人参加相关部门组织的经验交流会,已知ab 两位同学的成绩均为优秀,求ab 两位同学中至少有1人被选到的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某城市100户居民的月平均用电量(单位:),[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300]分组的频率分布直方图如图所示.

(1)求直方图中x的值;

(2)求月平均用电量的众数和中位数;

(3)在月平均用电量为[220,240),[240,260),[260,280),[280,300]的四组用户中,用分层抽样的方法抽取11户居民,则月平均用电量在[220,240)的用户中应抽取多少户?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=|sinx|+|sin(x+ )|的值域为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若,求函数的单调递减区间;

(2)若,求函数在区间上的最大值;

(3)若在区间上恒成立,求的最大值.

查看答案和解析>>

同步练习册答案