精英家教网 > 高中数学 > 题目详情
13.设直角坐标平面内与两个定点A(-2,0),B(2,0)的距离之差的绝对值等于2的点的轨迹是E.过点B作与x轴垂直的直线l与曲线E交于C,D两点,则$\overrightarrow{AC}•\overrightarrow{BD}$=(  )
A.-9B.-3C.3D.9

分析 由条件便可得出轨迹E为双曲线,并可求得方程,再令x=2,即可得到C,D的坐标,再由向量的数量积的坐标表示,计算即可得到所求值.

解答 解:直角坐标平面内与两个定点A(-2,0),B(2,0)的距离之差的绝对值等于2,
由双曲线的定义可得轨迹E是以A,B为焦点的双曲线,且c=2,a=1,b=$\sqrt{3}$,
方程为x2-$\frac{{y}^{2}}{3}$=1,x=2代入方程得:y=±3,
可设C点的坐标为(2,3),D(2,-3),
则$\overrightarrow{AC}•\overrightarrow{BD}$=(4,3)•(0,-3)=4×0+3×(-3)=-9.
故选:A.

点评 本题考查双曲线的定义,以及双曲线的标准方程,根据点的坐标求向量的坐标,向量数量积的坐标运算,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.已知函数f(x)=(x-1)ex+$\frac{1}{2}a{x^2}+1$(其中a∈R)有两个零点,则a的取值范围是(-∞,-1)∪(-1,0).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,在三棱柱ABC-A1B1C1中,侧面ACC1A1⊥底面ABC,∠A1AC=60°,AC=2AA1=4,点D,E分别是AA1,BC的中点.
(1)证明:DE∥平面A1B1C;
(2)若AB=2,∠BAC=60°,求直线DE与平面ABB1A1所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知复数z=a+i(a∈R).若$|z|<\sqrt{2}$,则z+i2在复平面内对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在平面直角坐标系xOy中,抛物线C:x2=2py(p>0)的焦点为F,过F的直线l交C于A,B两点,交x轴于点D,B到x轴的距离比|BF|小1.
(Ⅰ)求C的方程;
(Ⅱ)若S△BOF=S△AOD,求l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,三棱柱ABC-A1B1C1中,侧棱AA1⊥底面ABC,AB=AC=$\frac{1}{2}$AA1=a,AB⊥AC,D是棱BB1的中点.
(Ⅰ)证明:平面A1DC⊥平面ADC
(Ⅱ)求平面A1DC将此三棱柱分成的两部分的体积之比.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若$a={log_{\frac{1}{π}}}\frac{1}{3}$,$b={e^{\frac{π}{3}}}$,$c={log_3}cos\frac{1}{5}π$,则(  )
A.b>c>aB.b>a>cC.a>b>cD.c>a>b

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.对任意k∈[1,5],直线l:y=kx-k-1都与平面区域$\left\{\begin{array}{l}x≥a\\ x+y≤6\\ x-2y≤0\end{array}\right.$有公共点,则实数a的最大值是2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知$\overrightarrow{a}$=(1,2,-2),则与$\overrightarrow{a}$共线的单位向量坐标为$({\frac{1}{3},\frac{2}{3},-\frac{2}{3}})$或$({-\frac{1}{3},-\frac{2}{3},\frac{2}{3}})$.

查看答案和解析>>

同步练习册答案