精英家教网 > 高中数学 > 题目详情
6.已知等比数列{an}中,an+1>an,且满足:a2+a4=20,a3=8.
(1)求数列{an}的通项公式;
(2)若bn=anlog${\;}_{{\frac{1}{2}}_{\;}}$an,数列{bn}的前n项和为Sn,求Sn

分析 (1)由已知条件利用等比数列通项公式列出方程组,求出首项和公比,由此能求出数列{an}的通项公式;
(2)由bn=anlog${\;}_{{\frac{1}{2}}_{\;}}$an=-n•2n,利用错位相减法能求出数列{bn}的前n项和.

解答 解:(1)设等比数列{an}的首项为a1,公比为q(q>1)
由已知条件,得$\left\{\begin{array}{l}{{a}_{1}q+{a}_{1}{q}^{3}=20}\\{{a}_{1}{q}^{2}=8}\end{array}\right.$,解得$\left\{\begin{array}{l}{q=2}\\{{a}_{1}=2}\end{array}\right.$
∴${a}_{n}={2}^{n}$
(2)bn=anlog${\;}_{{\frac{1}{2}}_{\;}}$an=-n•2n
Sn=b1+b2+…+bn=-(1×2+2×22+…+n×2n)①
则2Sn=-(1×22+2×23+…+n×2n+1)②
②-①,得Sn=(2+22+…+2n)-n•2n+1=2n+1-2-n•2n+1
即数列{bn}的前项和Sn=2n+1-2-n•2n+1

点评 本题主要考查数列的通项公式的求法、前n项和公式的求法,考查等差数列、等比数列等基础知识,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.已知y=f(x)是奇函数,当x∈(0,2)时,f(x)=lnx-ax(a$>\frac{1}{2}$),当x∈(-2,0)时,f(x)的最小值为2,则a的值等于(  )
A.eB.1C.$\frac{2}{e}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.(Ⅰ)已知$cosα=\frac{{\sqrt{5}}}{3},α∈(-\frac{π}{2},0)$,求sin(π-α);
(Ⅱ)已知$sin(θ+\frac{π}{4})=\frac{3}{5}$,求$cos(\frac{π}{4}-θ)$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若正△ABC的边长为a,则△ABC的平面直观图△A′B′C′的面积为=$\frac{\sqrt{6}}{16}$a2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,在直三棱柱ABC-A1B1C1中,底面△ABC是等腰直角三角形,且斜边$AB=\sqrt{2}$,侧棱AA1=2,点D为AB的中点,点E在线段AA1上,AE=λAA1(λ为实数).
(1)求证:不论λ取何值时,恒有CD⊥B1E;
(2)当$λ=\frac{1}{3}$时,记四面体C1-BEC的体积为V1,四面体D-BEC的体积为V2,求V1:V2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设sn为等比数列{an}的前n项和,已知a1=2,a1+s2=a3,a1+s3=a4,则满足${a_n}={n^2}$的正整数n为(  )
A.2或4B.2C.4D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知复数z满足$\frac{z-1}{z+1}=i$,则复数z在复平面内对应点在(  )
A.第一、二象限B.第三、四象限C.实轴D.虚轴

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=x3$+\frac{3}{2}$(1-a)x2-3ax+1,a>0.
(1)试讨论f(x)(x≥0)的单调性;
(2)证明:对于正数a,存在正数p,使得当x∈[0,p]时,有-1≤f(x)≤1;
(3)设(1)中的p的最大值为g(a),求g(a)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知向量$\overrightarrow{m}$=(1,1),向量$\overrightarrow{n}$与向量$\overrightarrow{m}$的夹角为$\frac{3π}{4}$,且$\overrightarrow{m}$•$\overrightarrow{n}$=-1.
(1)求向量$\overrightarrow{n}$;
(2)设向量$\overrightarrow{a}$=(1,0),向量$\overrightarrow{b}$=(cosx,2cos2($\frac{π}{3}-\frac{x}{2}$)),其中0<x<$\frac{2π}{3}$,若$\overrightarrow{n}$•$\overrightarrow{a}$=0,试求|$\overrightarrow{n}$+$\overrightarrow{b}$|的取值范围.

查看答案和解析>>

同步练习册答案