精英家教网 > 高中数学 > 题目详情
11.若logm$\root{7}{n}$=k,则(  )
A.m7k=nB.n7=mkC.n=7mkD.n=k7m

分析 根据对数的运算性质即可求出.

解答 解:logm$\root{7}{n}$=k,
∴$\frac{1}{7}$logmn=k,
∴logmn=7k,
∴n=m7k
故选:A.

点评 本题考查了对数函数的运算性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.已知函数f(x)是实数集上的奇函数,f(x+3)=-f(x),且当0<x<1时,f(x)=x,则f(-6.4)=(  )
A.0.4B.-0.4C.0.6D.-0.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.作出下列函数的图象,并写出函数的定义域:
(1)y=2x;
(2)y=$\frac{1}{x}$;
(3)y=x2,x∈[-1,2];
(4)y=-x+1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.作出下列函数图象:
(1)y=x${\;}^{\frac{2}{3}}$;
(2)y=x${\;}^{\frac{3}{2}}$;
(3)y=x${\;}^{-\frac{3}{4}}$;
(4)y=x${\;}^{-\frac{4}{3}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设函数f(x)=$\frac{a{x}^{2}+1}{bx-c}$,a∈N*是奇函数,且f(1)=1,f(-2)>-$\frac{7}{5}$.
(1)求函数f(x)的解析式;
(2)f(x)在(1,+∞)上的单调性如何?用单调性定义证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知f(x)是R上的增函数,令F(x)=f(x+1)+3,则F(x)是R上的(  )
A.增函数B.减函数C.先减后增D.先增后减

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知正三角形ABC的边长为2,点E,F分别在边BC,AC上,且|BE|=|CF|,若$\overrightarrow{AE}$•$\overrightarrow{AF}$=$\frac{7}{8}$,则|BE|=(  )
A.$\frac{2}{3}$B.$\frac{3}{4}$C.1D.$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知条件p:实数x使得函数f(x)=$\frac{1}{\sqrt{x+1}}$+lg(5-x)有意义.条件q:m<x<2m+1(m∈R).
(Ⅰ)当m=1,且“p∧q为假,¬p为假“时,求实数x的取值范围;
(Ⅱ)若¬p是¬q的充分条件,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.将函数f(x)=sin(2x-$\frac{π}{3}$)的图象向左平移$\frac{π}{3}$个单位长度,再将图象上各点的横坐标压缩到原来的$\frac{1}{2}$倍,则所得到的图象的一条对称轴是x=$\frac{π}{24}$.

查看答案和解析>>

同步练习册答案