【题目】已知方程.
(1)设,方程有三个不同实根,求的取值范围;
(2)求证:是方程有三个不同实根的必要不充分条件.
【答案】(1) ;(2)见解析.
【解析】
试题(1)三次函数有三个零点,等价于零在极大值与极小值之间,因此本题实质先求函数极值,再解不等式, (2)证明不充分,只需举一个反例即可;证明必要性,可说明时方程没有三个不同实根.
试题解析:设.
(1)当时,方程有三个不同实根,
等价于函数有三个不同零点,
,令得或,
与的区间上情况如下:
所以,当时且时,存在,,,
使得.
由的单调性知,当且仅当时,函数有三个不同零点.
即方程有三个不同实根.
(2)当时,,,
此时函数在区间上单调递增,
所以不可能有三个不同零点.
当时,只有一个零点,记作,
当时,,在区间上单调递增;
当时,,在区间上单调递增.
所以不可能有三个不同零点.
综上所述,若函数有三个不同零点,则必有.
故是有三个不同零点的必要条件.
当,时,,只有两个不同零点,
所以不是有三个不同零点的充分条件.
因此是有三个不同零点的必要而不充分条件.
即是方程有三个不同实根的必要而不充分条件.
科目:高中数学 来源: 题型:
【题目】已知直线l:y=kx+b,(0<b<1)和圆O:相交于A,B两点.
(1)当k=0时,过点A,B分别作圆O的两条切线,求两条切线的交点坐标;
(2)对于任意的实数k,在y轴上是否存在一点N,满足?若存在,请求出此点坐标;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某中学高三年级有学生500人,其中男生300人,女生200人。为了研究学生的数学成绩是否与性别有关,采用分层抽样的方法,从中抽取了100名学生,统计了他们期中考试的数学分数,然后按照性别分为男、女两组,再将两组的分数分成5组: 分别加以统计,得到如图所示的频率分布直方图。
(I)从样本分数小于110分的学生中随机抽取2人,求两人恰为一男一女的概率;
(II)若规定分数不小于130分的学生为“数学尖子生”,请你根据已知条件完成2×2列联表,并判断是否有90%的把握认为“数学尖子生与性别有关”?
附表:
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系中,以坐标原点为极点, 轴正半轴为极轴建立极坐标系,已知曲线的极坐标方程为: ,直线的参数方程是(为参数, ).
(1)求曲线的直角坐标方程;
(2)设直线与曲线交于两点,且线段的中点为,求.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,梯形中,∥,,,,将△沿对角线折起,设折起后点的位置为,使二面角为直二面角,给出下面四个命题:① ;②三棱锥的体积为;③平面;④平面平面;其中正确命题的个数是( )
A.1B.2C.3D.4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图, 是边长为3的正方形,平面,,,BE与平面所成角为.
(Ⅰ)求证:平面 ;
(Ⅱ)求二面角的余弦值;
(Ⅲ)设点M在线段BD上,且平面BEF,求的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线l的方程为y=x-2,又直线l过椭圆C:(a>b>0)的右焦点,且椭圆的离心率为.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点D(0,1)的直线与椭圆C交于点A,B,求△AOB的面积的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com