精英家教网 > 高中数学 > 题目详情

【题目】已知方程.

(1)设,方程有三个不同实根,求的取值范围;

(2)求证:是方程有三个不同实根的必要不充分条件.

【答案】(1) ;(2)见解析.

【解析】

试题(1)三次函数有三个零点,等价于零在极大值与极小值之间,因此本题实质先求函数极值,再解不等式, (2)证明不充分,只需举一个反例即可;证明必要性,可说明时方程没有三个不同实根.

试题解析:设.

(1)当时,方程有三个不同实根,

等价于函数有三个不同零点,

,令

的区间上情况如下:

所以,当时且时,存在

使得.

的单调性知,当且仅当时,函数有三个不同零点.

即方程有三个不同实根.

(2)当时,

此时函数在区间上单调递增,

所以不可能有三个不同零点.

时,只有一个零点,记作

时,在区间上单调递增;

时,在区间上单调递增.

所以不可能有三个不同零点.

综上所述,若函数有三个不同零点,则必有.

有三个不同零点的必要条件.

时,只有两个不同零点,

所以不是有三个不同零点的充分条件.

因此有三个不同零点的必要而不充分条件.

是方程有三个不同实根的必要而不充分条件.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知直线ly=kx+b(0<b<1)和圆O相交于AB两点.

1)当k=0时,过点AB分别作圆O的两条切线,求两条切线的交点坐标;

2)对于任意的实数k,在y轴上是否存在一点N,满足?若存在,请求出此点坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学高三年级有学生500人,其中男生300人,女生200人。为了研究学生的数学成绩是否与性别有关,采用分层抽样的方法,从中抽取了100名学生,统计了他们期中考试的数学分数,然后按照性别分为男、女两组,再将两组的分数分成5组: 分别加以统计,得到如图所示的频率分布直方图。

(I)从样本分数小于110分的学生中随机抽取2人,求两人恰为一男一女的概率;

(II)若规定分数不小于130分的学生为“数学尖子生”,请你根据已知条件完成2×2列联表,并判断是否有90%的把握认为“数学尖子生与性别有关”?

附表:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,以坐标原点为极点, 轴正半轴为极轴建立极坐标系,已知曲线的极坐标方程为: ,直线的参数方程是为参数, ).

(1)求曲线的直角坐标方程;

(2)设直线与曲线交于两点,且线段的中点为,求

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,梯形中,,将△沿对角线折起,设折起后点的位置为,使二面角为直二面角,给出下面四个命题:① ;②三棱锥的体积为;③平面;④平面平面;其中正确命题的个数是(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)若 ,求的值;

(Ⅱ)讨论函数的单调性。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图, 是边长为3的正方形,平面,BE与平面所成角为

(Ⅰ)求证:平面

(Ⅱ)求二面角的余弦值;

(Ⅲ)设点M在线段BD上,且平面BEF,求的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若函数上有三个零点,求实数的取值范围;

(2)设函数为自然对数的底数),证明:对任意的,都有恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l的方程为yx2,又直线l过椭圆Cab0)的右焦点,且椭圆的离心率为

)求椭圆C的方程;

)过点D01)的直线与椭圆C交于点AB,求△AOB的面积的最大值.

查看答案和解析>>

同步练习册答案