【题目】在梯形ABCD中,DC∥AB,DC⊥CB,E是AB的中点,且AB=2BC=2CD=4(如图所示),将△ADE沿DE翻折,使AB=2(如图所示),F是线段AD上一点,且AF=2DF.
(Ⅰ)求四棱锥A-BCDE的体积;
(Ⅱ)在线段BE上是否存在一点G,使EF∥平面ACG?若存在,请指出点G的位置,并证明你的结论;若不存在,请说明理由.
【答案】(Ⅰ)(Ⅱ)线段BE上存在一点G,G是BE上靠近点B的三等分点,使EF∥平面ACG.
【解析】
(Ⅰ)取BE中点O,连结AO,证明AO⊥平面BCDE,即可计算四棱锥A-BCDE的体积。
(Ⅱ)过F作FH∥DC,交AC于H,在EB上取EG=FH,连结GH,证明FHEG,即可证明EF∥,问题得解。
解:(Ⅰ)∵在梯形ABCD中,DC∥AB,DC⊥CB,E是AB的中点,AB=2BC=2CD=4(如图1所示),
将△ADE沿DE翻折,使AB=2(如图2所示),
,∴平面ABE⊥
∴平面ABE⊥平面BCDE,四边形BCDE是以2为边长的正方形,
取BE中点O,连结AO,则AO⊥BE,
∴AO⊥平面BCDE,且AO==,
∴四棱锥A-BCDE的体积V===.
(Ⅱ)过F作FH∥DC,交AC于H,在EB上取EG=FH,连结GH,
∵F是线段AD上一点,且AF=2DF.
,
∴EG=2GB,即G是BE上靠近点B的三等分点,
此时,FHEG,∴四边形GEFH是平行四边形,∴EF∥GH,
∵EF平面ACG,GH平面ACG,
∴线段BE上存在一点G,G是BE上靠近点B的三等分点,使EF∥平面ACG.
科目:高中数学 来源: 题型:
【题目】已知,函数(是自然对数的底数).
(Ⅰ)若,证明:曲线没有经过点的切线;
(Ⅱ)若函数在其定义域上不单调,求的取值范围;
(Ⅲ)是否存在正整数,当时,函数的图象在轴的上方,若存在,求的值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列的前项和为, ,数列满足点在直线上.
(1)求数列, 的通项, ;
(2)令,求数列的前项和;
(3)若,求对所有的正整数都有成立的的范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】治理大气污染刻不容缓,根据我国分布的《环境空气质量数(AQI)技术规定》:空气质量指数划分阶为0~50、51~100、101~150、151~200、201~300和大于300六级,对应于空气质量指数的六个级别,指数越大,级别越高,说明污染越严重,对人体健康的影响也越明显.专家建议:当空气质量指数小于时,可以户外运动;空气质量指数及以上,不适合进行旅游等户外活动,以下是某市年月中旬的空气质量指数情况:
时间 | 11日 | 12日 | 13日 | 14日 | 15日 | 16日 | 17日 | 18日 | 19日 | 20日 |
AQI | 149 | 143 | 251 | 254 | 138 | 55 | 69 | 102 | 243 | 269 |
(1)求月中旬市民不适合进行户外活动的概率;
(2)一外地游客在月中旬来该市旅游,想连续游玩两天,求适合旅游的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某中学在高二年级开设大学先修课程《线性代数》,共有50名同学选修,其中男同学30名,女同学20名.为了对这门课程的教学效果进行评估,学校按性别采用分层抽样的方法抽取5人进行考核.
(Ⅰ)求抽取的5人中男、女同学的人数;
(Ⅱ)考核前,评估小组打算从抽取的5人中随机选出2名同学进行访谈,求选出的两名同学中恰有一名女同学的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】中央政府为了应对因人口老龄化而造成的劳动力短缺等问题,拟定出台“延迟退休年龄政策”.为了解人们对“延迟退休年龄政策”的态度,责成人社部进行调研.人社部从网上年龄在15~65岁的人群中随机调查100人,调查数据的频率分布直方图和支持“延迟退休”的人数与年龄的统计结果如下:
(1)由以上统计数据填列联表,并判断能否在犯错误的概率不超过0.05的前提下认为以45岁为分界点的不同人群对“延迟退休年龄政策”的支持度有差异;
(2)若以45岁为分界点,从不支持“延迟退休”的人中按分层抽样的方法抽取8人参加某项活动.现从这8人中随机抽2人.
①抽到1人是45岁以下时,求抽到的另一人是45岁以上的概率.
②记抽到45岁以上的人数为,求随机变量的分布列及数学期望.
参考数据:
,其中.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com