精英家教网 > 高中数学 > 题目详情
20.曲线$f(x)=\frac{cosx}{2+sinx}$在x=0处的切线方程为(  )
A.$y=-\frac{1}{4}x+\frac{1}{2}$B.$y=-\frac{1}{4}x$C.$y=\frac{1}{4}x+\frac{1}{2}$D.$y=\frac{1}{4}x$

分析 根据求导法则求出曲线方程的导函数,把入求出的导函数值即为切线方程的斜率,由求出的切点坐标和斜率写出切线方程即可.

解答 解:∵曲线$f(x)=\frac{cosx}{2+sinx}$,
∴f′(x)=$\frac{-1-2sinx}{(2+sinx)^{2}}$,
∴当x=0时,f′(0)=-$\frac{1}{4}$,
又切点坐标为(0,$\frac{1}{2}$),
∴所求切线方程为y-$\frac{1}{2}$=-$\frac{1}{4}$x,即y=-$\frac{1}{4}$x+$\frac{1}{2}$.
故选A.

点评 本小题主要考查直线的斜率、导数的几何意义、利用导数研究曲线上某点切线方程等基础知识,考查运算求解能力.属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.下列命题中,真命题是(  )
A.“?x∈R,x2-x≤0”的否定是“?x∈R,x2-x≥0”
B.“p∧q为真”是“p∨q为真”的必要不充分条件
C.“若am2≤bm2,则a≤b”的否命题为真
D.?x∈R,sin2$\frac{x}{2}$+cos2$\frac{x}{2}$=$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=x2-2ax-3
(1)若函数在f(x)的单调递减区间(-∞,2],求函数f(x)在区间[3,5]上的最大值.
(2)若函数在f(x)在单区间(-∞,2]上是单调递减,求函数f(1)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知双曲线$\frac{x^2}{a^2}-{y^2}=1,(a>0)$的渐近线方程为$y=±\frac{{\sqrt{3}}}{3}x$,则其焦距为4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知甲、乙两人下棋,和棋的概率为$\frac{1}{2}$,乙胜的概率为$\frac{1}{3}$,则甲胜的概率为$\frac{1}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设f0(x)=cosx,${f_1}(x)=f_0^'(x)$,${f_2}(x)=f_1^'(x)$,…${f_{n+1}}(x)=f_n^'(x)$,n∈N,则f2011(x)等于(  )
A.sinxB.-sinxC.cosxD.-cosx

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在△ABC中,a=8,b=10,A=45°,则此三角形解的情况是(  )
A.一解B.两解C.一解或两解D.无解

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设向量$\overrightarrow a,\overrightarrow b$满足$|{\overrightarrow a}|=1,|{\overrightarrow b}|=\sqrt{2}$$,\overrightarrow a⊥(\overrightarrow a+\overrightarrow b)$,则$\overrightarrow a$与$\overrightarrow b$的夹角为(  )
A.$\frac{π}{2}$B.$\frac{2π}{3}$C.$\frac{3π}{4}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知a>0,函数f(x)=-2asin(2x+$\frac{π}{6}$)+2a+b,当$x∈[{0,\frac{π}{2}}]$时,-5≤f(x)≤1.
(1)设$g(x)=f(x+\frac{π}{2})$,且lgg(x)>0,求g(x)的单调递增区间;
(2)若不等式|f(x)-m|<3对于任意$x∈({0,\frac{π}{6}}]$恒成立,求实数m的取值范围.

查看答案和解析>>

同步练习册答案