| A. | sinx | B. | -sinx | C. | cosx | D. | -cosx |
分析 分别求得${f_1}(x)=f_0^'(x)$=-sinx,${f_2}(x)=f_1^'(x)$=-cosx,f′3(x)=sinx,f′4(x)=cosx,…根据函数的周期性,即可求得f2011(x)的值.
解答 解:由导数的运算可知:${f_1}(x)=f_0^'(x)$=-sinx,${f_2}(x)=f_1^'(x)$=-cosx,f′3(x)=sinx,f′4(x)=cosx,…
∴f′(x)是以4为周期,
2011=4×502+3,
f2011(x)=f′3(x)=sinx,
故答案选:A.
点评 本题考查导数的运算,导数的求导法则,考查函数的周期性,考查计算能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 函数f(x)的最小正周期为$\frac{π}{2}$ | B. | 函数f(x)是偶函数 | ||
| C. | 函数f(x)的图象关于直线$x=\frac{π}{3}$对称 | D. | 函数f(x)在区间$[0,\frac{π}{4}]$上是增函数 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $y=-\frac{1}{4}x+\frac{1}{2}$ | B. | $y=-\frac{1}{4}x$ | C. | $y=\frac{1}{4}x+\frac{1}{2}$ | D. | $y=\frac{1}{4}x$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com