精英家教网 > 高中数学 > 题目详情
10.数列${a_n}=2n-1({n∈{N^+}})$排出如图所示的三角形数阵,设2013位于数阵中第s行,第t列,则s+t=62.

分析 由三角形数阵分析得到数阵的第n+1行第1列的数在数列{2n-1}中所在的项,验证可知第45行第1列是数列{2n-1}的第991项,而2013是数列{2n-1}的第1007项,由此可推得2013位于数阵中的行与列,从而得到答案

解答 解:由三角形数阵可知,三角形数阵第n+1行第1列为数列{2n-1}的第$\frac{n(n+1)}{2}$+1项,
第45行第1列为第991项,2013为数列的第1007项,
∴s=45,t=17,
那么s+t=62.
故答案为:62.

点评 本题考查了等差数列的通项公式,解答的关键是明确所给三角形数阵的特点,求出数阵的第n+1行第1列的数在数列{2n-1}中所在的项,是中低档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.命题p:?b∈R,使直线y=-x+b是曲线y=x3-3ax的切线.若?p为真,则实数a的取值范围是(  )
A.$a<\frac{1}{3}$B.$a≤\frac{1}{3}$C.$a>\frac{1}{3}$D.$a≥\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.下列命题中正确的是(  )
A.任意两个复数均不能比较大小
B.复数z为实数的充要条件是$z=\overline z$
C.复数z=3+2i在复平面上对应的点在第二象限
D.复数i+3的共轭复数为i-3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.实数a取什么值时,复数z=a2-1+(a+1)i.是
(I)实数;
(Ⅱ)虚数;
(Ⅲ)纯虚数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设f0(x)=cosx,${f_1}(x)=f_0^'(x)$,${f_2}(x)=f_1^'(x)$,…${f_{n+1}}(x)=f_n^'(x)$,n∈N,则f2011(x)等于(  )
A.sinxB.-sinxC.cosxD.-cosx

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知函数$f(x)=\left\{{\begin{array}{l}{1-sinx,x∈[0,π)}\\{{{log}_{2016}}\frac{x}{π},x∈[π,+∞)}\end{array}}\right.$若有三个不同的实数x1,x2,x3(x1<x2<x3),使得f(x1)=f(x2)=f(x3),则满足x1+x2>4π-x3的事件的概率为$\frac{2013}{2015}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.命题p:$f(x)=\frac{2}{x-m}$在区间(-7,+∞)是减函数,命题q:不等式${m^2}+5m-3≥\sqrt{{a^2}+8}$对任意的实数a∈[-1,1]恒成立.若(?p)∧q为真命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.某市在“国际禁毒日”期间,连续若干天发布了“珍爱生命,远离毒品”的电视公益广告,期望让更多的市民知道毒品的危害性.禁毒志愿者为了了解这则广告的宣传效果,随机抽取了100名年龄阶段在[10,20),[20,30),[30,40),[40,50),[50,60)的市民进行问卷调查,由此得到样本频率分布直方图如图所示.
(1)求随机抽取的市民中年龄段在[30,40)的人数;
(2)从不小于40岁的人中按年龄段分层抽样的方法随机抽取5人,求[50,60)年龄段抽取的人数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.函数f(x)=2cos(x-$\frac{π}{3}$)的单调递增区间是(  )
A.[2kπ+$\frac{π}{3}$,2kπ+$\frac{4π}{3}$](k∈Z)B.[2kπ-$\frac{π}{3}$,2kπ+$\frac{2π}{3}$](k∈Z)
C.[2kπ-$\frac{2π}{3}$,2kπ+$\frac{π}{3}$](k∈Z)D.[2kπ-$\frac{2π}{3}$,2kπ+$\frac{4π}{3}$](k∈Z)

查看答案和解析>>

同步练习册答案