分析 由三角形数阵分析得到数阵的第n+1行第1列的数在数列{2n-1}中所在的项,验证可知第45行第1列是数列{2n-1}的第991项,而2013是数列{2n-1}的第1007项,由此可推得2013位于数阵中的行与列,从而得到答案
解答 解:由三角形数阵可知,三角形数阵第n+1行第1列为数列{2n-1}的第$\frac{n(n+1)}{2}$+1项,
第45行第1列为第991项,2013为数列的第1007项,
∴s=45,t=17,
那么s+t=62.
故答案为:62.
点评 本题考查了等差数列的通项公式,解答的关键是明确所给三角形数阵的特点,求出数阵的第n+1行第1列的数在数列{2n-1}中所在的项,是中低档题.
科目:高中数学 来源: 题型:选择题
| A. | $a<\frac{1}{3}$ | B. | $a≤\frac{1}{3}$ | C. | $a>\frac{1}{3}$ | D. | $a≥\frac{1}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 任意两个复数均不能比较大小 | |
| B. | 复数z为实数的充要条件是$z=\overline z$ | |
| C. | 复数z=3+2i在复平面上对应的点在第二象限 | |
| D. | 复数i+3的共轭复数为i-3 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | sinx | B. | -sinx | C. | cosx | D. | -cosx |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [2kπ+$\frac{π}{3}$,2kπ+$\frac{4π}{3}$](k∈Z) | B. | [2kπ-$\frac{π}{3}$,2kπ+$\frac{2π}{3}$](k∈Z) | ||
| C. | [2kπ-$\frac{2π}{3}$,2kπ+$\frac{π}{3}$](k∈Z) | D. | [2kπ-$\frac{2π}{3}$,2kπ+$\frac{4π}{3}$](k∈Z) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com