精英家教网 > 高中数学 > 题目详情
20.命题p:?b∈R,使直线y=-x+b是曲线y=x3-3ax的切线.若?p为真,则实数a的取值范围是(  )
A.$a<\frac{1}{3}$B.$a≤\frac{1}{3}$C.$a>\frac{1}{3}$D.$a≥\frac{1}{3}$

分析 写出命题p的否定,求出f(x)=x3-3ax的导函数,得到导函数的范围,结合¬p为真可得关于a的不等式,则a的范围可求.

解答 解:由命题p:?b∈R,使直线y=-x+b是曲线y=x3-3ax的切线,得
?p:对任意的实数b,直线y=-x+b都不是曲线y=x3-3ax的切线.
由?p为真.
设f(x)=x3-3ax,求导函数,可得f′(x)=3x2-3a∈[-3a,+∞),
对任意的实数b,直线y=-x+b都不是曲线y=x3-3ax的切线,
∴-3a>-1,得a<$\frac{1}{3}$.
即实数a的取值范围为a$<\frac{1}{3}$.
故选:A.

点评 本题考查命题的真假判断与应用,考查学生会利用导数求曲线上过某点切线方程,考查直线的斜率与函数的导数的关系,考查计算能力,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.已知f(x)是定义域为R的偶函数,且f(2+x)=f(2-x),当x∈[0,2]时,f(x)=x2-2x,则f(-5)=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知等差数列{an}的前n项和为Sn,S5=35,a5和a7的等差中项为13.
(1)求an及Sn
(2)令bn=$\frac{1}{{{a_n}^2-1}}$(n∈N*),求数列{bn}的前项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知f(x)=$-{x^2}+2x+4,g(x)=-x+4,定义F(x)=\left\{\begin{array}{l}g(x)\\ f(x)\end{array}\right.\begin{array}{l},{f(x)≥g(x)}\\,{f(x)<g(x)}\end{array}$,则F(x)的最大值为(  )
A.1B.4C.5D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.非零向量$\overrightarrow a,\overrightarrow b满足|\overrightarrow a|=|\overrightarrow b|=|\overrightarrow a+\overrightarrow b|$,则$\overrightarrow a,\overrightarrow b$的夹角为$\frac{2π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.对于平面直角坐标系内任意两点A(x1,y1),B(x2,y2),定义它们之间的一种“折线距离”:d(A,B)=|x2-x1|+|y2-y1|.则下列命题正确的是(  )
①若A(-1,3),B(1,0),则$d(A,B)=\sqrt{13}$;
②若A为定点,B为动点,且满足d(A,B)=1,则B点的轨迹是一个圆;
③若点C在线段AB上,则d(A,C)+d(C,B)=d(A,B).
A.①②B.C.D.①②③

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在直三棱柱ABC-A1B1C1中,A1B1=A1C1=2,A1A=4,D,E分别是棱BC,CC1上的点(点D不同于点C),且AD⊥DE,F为B1C1的中点.
求证:(1)平面ADE⊥平面BCC1B1
(2)直线A1F∥平面ADE;
(3)若B1C1=2,求三棱锥F-ADE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.正项等比数列{an}满足${a_1}{a_4}{a_7}={2^π}$,则tan(log2a2+log2a3+log2a4+log2a5+log2a6)的值为(  )
A.$-\frac{{\sqrt{3}}}{3}$B.$\frac{{\sqrt{3}}}{3}$C.$\sqrt{3}$D.$-\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.数列${a_n}=2n-1({n∈{N^+}})$排出如图所示的三角形数阵,设2013位于数阵中第s行,第t列,则s+t=62.

查看答案和解析>>

同步练习册答案