精英家教网 > 高中数学 > 题目详情
8.已知f(x)=$-{x^2}+2x+4,g(x)=-x+4,定义F(x)=\left\{\begin{array}{l}g(x)\\ f(x)\end{array}\right.\begin{array}{l},{f(x)≥g(x)}\\,{f(x)<g(x)}\end{array}$,则F(x)的最大值为(  )
A.1B.4C.5D.3

分析 当f(x)≥g(x)时,即-x2+2x+4≥-x+4,解得:0≤x≤3;当f(x)<g(x)时,即-x2+2x+4<-x+4,解得:x<0或x>3,求得F(x)的解析式,绘制函数图象,由函数图象即可求得F(x)的最大值

解答 解:当f(x)≥g(x)时,即-x2+2x+4≥-x+4,解得:0≤x≤3;
当f(x)<g(x)时,即-x2+2x+4<-x+4,解得:x<0或x>3,
∴函数F(x)=$\left\{\begin{array}{l}{g(x)}&{f(x)≥g(x)}\\{f(x)}&{f(x)<g(x)}\end{array}\right.$=$\left\{\begin{array}{l}{-x+4}&{(0≤x≤3)}\\{-{x}^{2}+2x+4}&{(x<0或x>3)}\end{array}\right.$,
由函数图象可知:当x=0时,F(x)取最大值,最大值为:4,
故答案选:B.

点评 本题考查求函数的最值的方法,考查分段函数的解析式的求法,考查分类讨论思想和数形结合思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.将函数f(x)=$\sqrt{3}$sinx+3cosx的图象向右平移m(m>0)个单位长度后,所得到的图象关于y轴对称,则m的最小值是(  )
A.$\frac{π}{12}$B.$\frac{π}{6}$C.$\frac{π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.实数m分别取什么数值时?复数z=(m2+5m+6)+(m2-2m-15)i
(1)与复数2-12i相等;
(2)与复数12+16i互为共轭;
(3)复数z在复平面内对应的点在第四象限.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.等比数列{an}的前n项和为Sn,已知a2a5=2a3,且a4与2a7的等差中项为$\frac{5}{4}$,则S5=(  )
A.29B.31C.33D.36

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=loga(x-1)的图象过点(3,1),
(1)求函数f(x)的解析式;   
(2)若f(m)≤f(2),求m的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,AB是圆的直径,PA垂直圆所在的平面,C是圆上异于A、B的点.
PA=AB,∠BAC=60°,点D,E分别在棱PB,PC上,且DE∥BC.
(1)求证:BC⊥平面PAC;
(2)当D为PB的中点时,求AD与平面PBC所成的角的正弦值;
(3)是否存在点E使得二面角A-DE-P为直二面角?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.命题p:?b∈R,使直线y=-x+b是曲线y=x3-3ax的切线.若?p为真,则实数a的取值范围是(  )
A.$a<\frac{1}{3}$B.$a≤\frac{1}{3}$C.$a>\frac{1}{3}$D.$a≥\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知$f(x)=\frac{{3{e^{|x|}}-xcosx}}{{{e^{|x|}}}}$在$x∈[-\frac{π}{2},\frac{π}{2}]$上的最大值为p,最小值为q,则p+q=6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.实数a取什么值时,复数z=a2-1+(a+1)i.是
(I)实数;
(Ⅱ)虚数;
(Ⅲ)纯虚数.

查看答案和解析>>

同步练习册答案