精英家教网 > 高中数学 > 题目详情
2.在等差数列{an}中,若ap=4,aq=2且p=4+q,则公差d=(  )
A.1B.$\frac{1}{2}$C.$-\frac{1}{2}$D.-1

分析 利用等差数列通项公式列出方程组,能求出公差.

解答 解:∵在等差数列{an}中,ap=4,aq=2且p=4+q,
∴$\left\{\begin{array}{l}{{a}_{p}={a}_{4+q}={a}_{1}+(4+q-1)d=4}\\{{a}_{q}={a}_{1}+(q-1)d=2}\end{array}\right.$,
解得公差d=$\frac{1}{2}$.
故选:B.

点评 本题考查等差数列公差的求法,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.△ABC中,角A,B,C的对边分别为a,b,c,已知$b=\frac{1}{2}$,$bsinA=asin\frac{B}{2}$,则S△ABC的最大值为(  )
A.$\frac{{\sqrt{3}}}{8}$B.$\frac{{\sqrt{3}}}{16}$C.$\frac{{\sqrt{3}}}{24}$D.$\frac{{\sqrt{3}}}{48}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.函数f(x)=x2+2(a-1)x+2在区间(0,4)上单调,那么实数a的取值范围(  )
A.(-∞,-3]B.[-3,1]C.[1,+∞)∪(-∞,-3]D.[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知sinx+cosx=$\frac{1}{3}$,且x是第二象限角.
求(1)sinx-cosx
(2)sin3x-cos3x.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,在正三棱柱ABCA1B1C1中,E,F分别为BB1,AC的中点.求证:BF∥平面A1EC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如果函数f(x)满足:在定义域D内存在x0,使得对于给定常数t,有f(x0+t)=f(x0)•f(t)成立,则称f(x)为其定义域上的t级分配函数.研究下列问题:
(1)判断函数f(x)=2x和g(x)=$\frac{2}{x}$是否为1级分配函数?说明理由;
(2)问函数φ(x)=)$\sqrt{\frac{a}{{x}^{2}+1}}$(a>0)能否成为2级分配函数,若能,则求出参数a的取值范围;若不能请说明理由;
(3)讨论是否存在实数a,使得对任意常数t(t∈R)函数φ(x)=$\sqrt{\frac{a}{{x}^{2}+1}}$(a>0)都是其定义域上的t级分配函数,若存在,求出参数a的取值范围,若不能请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.某同学用五点法画函数f(x)=Asin(ωx+φ),(ω>0,|φ|<$\frac{π}{2}$)在某一个周期内的图象时,列表并填入了部分数据,如表:
ωx+φ0$\frac{π}{2}$π$\frac{3x}{2}$
x$\frac{π}{3}$$\frac{5π}{6}$
Asin(ωx+φ)05-50
(1)请将上表数据补充完整,并直接写出函数f(x)的解析式f(x)=5sin(2x-$\frac{π}{6}$);
(2)若函数f(x)的图象向左平移$\frac{π}{6}$个单位后对应的函数为g(x),求g(x)的图象离原点最近的对称中心(-$\frac{π}{12}$,0).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,四棱锥P-ABCD的底面是平行四边形,BA=BD=$\sqrt{2}$,AD=2,PA=PD=$\sqrt{5}$,E,F分别是棱AD,PC的中点.
(Ⅰ)证明 AD⊥平面PBE;
(Ⅱ)若二面角P-AD-B为60°,求直线EF与平面PBC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数f(x)=|log3x|,若函数y=f(x)-m有两个不同的零点a,b,则(  )
A.a+b=1B.a+b=3mC.ab=1D.b=am

查看答案和解析>>

同步练习册答案