精英家教网 > 高中数学 > 题目详情
20.若两个平面互相垂直,则分别在这两个平面内的两条直线的关系可能为(  )
A.平行或异面B.相交或者异面C.平行或者相交D.相交、平行或异面

分析 以正方体为载体,列举出所有情况,由此能求出结果.

解答 解:如图,在正方体ABCD-A1B1C1中,
面ABCD⊥面ADD1A1
A1D1?面ADD1A1,BC?面ABCD,A1D1∥BC;
A1A?面ADD1A1,AB?面ABCD,A1A∩AB=B;
A1D1?面ADD1A1,AB?面ABCD,A1D1与AB异面.
∴若两个平面互相垂直,
则分别在这两个平面内的两条直线相交、平行或异面.
故选:D.

点评 本题考查两直线的位置关系的判断,是基础题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.双曲线$\frac{x^2}{2}$-$\frac{y^2}{3}$=1的焦点到其渐近线距离为(  )
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.说明下列每组函数图象之间的关系.
(1)y=log3x与y=3x
(2)y=2x与y=2x+1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设函数$f(x)=sin(ωx+ϕ),(ω>0,0<ϕ<\frac{π}{2})$的最小正周期为π,且$f(\frac{π}{2})=-\frac{1}{2}$.
(1)求ω和ϕ的值;
(2)用五点法作出函数f(x)在[0,π]上的图象;
(3)将f(x)图象上所有点的横坐标伸长到原来的4倍(纵坐标不变),然后向右平移$\frac{π}{3}$个单位,得到函数y=g(x),求g(x)的单调减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知c>0,设命题p:函数y=cx为减函数,命题q:当x∈[${\frac{1}{2}$,2]时,函数f(x)=x+$\frac{1}{x}$>$\frac{1}{c}$恒成立.如果命题p与命题q中有且只有一个命题为真命题,试求c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设函数f(x)=$\left\{{\begin{array}{l}{x-1,x>0}\\{0,x=0}\\{x+1,x<0}\end{array}}$,则f(f(1))的值为0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知集合A={x|-2m-1<x<m+1},集合B={x|-1≤x≤2}.
(1)若x∈A是x∈B的充分不必要条件,求实数m的取值范围;
(2)若x∈A是x∈B的必要不充分条件,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若函数f(x)=$\frac{{2{x^2}+x+2}}{{{x^2}+1}}$的最大值为M,最小值为N,则M+N=(  )
A.4B.0C.2D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知△ABC的面积S满足2-$\sqrt{3}$≤S≤1,且$\overrightarrow{AC}$•$\overrightarrow{CB}$=-2,∠ACB=θ.
(1)若$\overrightarrow m$=(sin2A,cos2A),$\overrightarrow n$=(cos2B,sin2B),求|$\overrightarrow m$+2$\overrightarrow n$|的取值范围;
(2)求函数f(θ)=sin(θ+$\frac{π}{4}$)-4$\sqrt{3}$sinθcosθ+cos(θ-$\frac{π}{4}$)-2的最大值.

查看答案和解析>>

同步练习册答案