分析 (1)利用周期公式可求ω的值,利用诱导公式及已知结合范围0<ϕ<$\frac{π}{2}$,可求ϕ的值.
(2)分别令2x+$\frac{π}{6}$=0,$\frac{π}{2}$,π,$\frac{3π}{2}$,2π,求出对应的x的值,列表,用五点画图法画出函数图象即可.
(3)根据图象的变换规则逐步得出函数解析式为g(x)=sin$\frac{1}{2}x$,令2kπ+$\frac{π}{2}$≤$\frac{1}{2}x$≤2kπ+$\frac{3π}{2}$,k∈Z,解得g(x)的单调减区间.
解答 (本题满分为12分)
解:(1)∵由已知T=π=$\frac{2π}{ω}$,
∴解得:ω=2,
又∵f($\frac{π}{2}$)=sin(2×$\frac{π}{2}$+ϕ)=-sinϕ=-$\frac{1}{2}$,且0<ϕ<$\frac{π}{2}$,
∴ϕ=$\frac{π}{6}$…2分
(2)由(1)可得:f(x)=sin(2x+$\frac{π}{6}$),
列表如下:
| 2x+$\frac{π}{6}$ | 0 | $\frac{π}{2}$ | π | $\frac{3π}{2}$ | 2π |
| x | -$\frac{π}{12}$ | $\frac{π}{6}$ | $\frac{5π}{12}$ | $\frac{2π}{3}$ | $\frac{11π}{12}$ |
| y | 0 | 1 | 0 | -1 | 0 |
点评 本题主要考查了周期公式,诱导公式,五点画图法画出函数图象,三角函数图象的变换规则,正弦函数的图象和性质的应用,考查了数形结合思想,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 垂直于同一平面的两个平面平行 | |
| B. | 平行于同一直线的两个平面平行 | |
| C. | 垂直于同一平面的两条直线平行 | |
| D. | 平行直线的在同一平面上的投影相互平行 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | lna>-b-1 | B. | lna≥-b-1 | C. | lna<-b-1 | D. | lna≤-b-1 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com