精英家教网 > 高中数学 > 题目详情
18.某程序框图如图所示,若输出的S=29,则判断框内应填(  )
A.k>5?B.k>4?C.k>7?D.k>6?

分析 分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输入S的值,条件框内的语句是决定是否结束循环,模拟执行程序即可得到答案.

解答 解:程序在运行过程中各变量值变化如下表:
           k   S         是否继续循环
循环前 1   1/
第一圈 2   5         是
第二圈 3   11        是
第三圈 4   19        是
第四圈 5   29        否
故退出循环的条件应为k>4.
故选:B.

点评 本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.在△ABC中,角A,B,C的对边长分别为a,b,c,且cos2B-cos2A=2sinC•(sinA-sinC).
(1)求角B的大小;
(2)若$b=\sqrt{3}$,求2a+c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在平面直角坐标系xOy中,椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,四个顶点围成的四边形面积为4.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过原点的直线与椭圆C交于A,B两点(A,B不是椭圆C的顶点),点D在椭圆C上,且AD⊥AB.直线BD与x轴、y轴分别交于M,N两点.设直线BD,AM的斜率分别为k1,k2,证明存在常数λ使得k1=λk2,并求出λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知$|{\overrightarrow a}|=4,|{\overrightarrow b}|=5,\overrightarrow c=λ\overrightarrow a+μ\overrightarrow b(λ,μ∈$R),若$\overrightarrow a⊥\overrightarrow b,\overrightarrow c⊥({\overrightarrow b-\overrightarrow a})$,则$\frac{λ}{μ}$=$\frac{25}{16}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知椭圆$C:\frac{y^2}{a^2}+\frac{x^2}{b^2}=1({a>b>0})$的短轴长为2,且椭圆C的顶点在圆$M:{x^2}+{({y-\frac{{\sqrt{2}}}{2}})^2}=\frac{1}{2}$上.
(1)求椭圆C的方程;
(2)过椭圆的上焦点作相互垂直的弦AB,CD,求|AB|+|CD|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.设直线y=kx+1与圆x2+y2+2x-my=0相交于A,B两点,若点A,B关于直线l:x+y=0对称,则|AB|=$\sqrt{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=x2-1-2alnx(a≠0),求函数f(x)的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.过定点(-2,0)的直线l与曲线C:(x-2)2+y2=4(0≤x≤3)交于不同的两点,则直线l的斜率的取值范围是$({-\frac{{\sqrt{3}}}{3},-\frac{{\sqrt{3}}}{5}}]∪[{\frac{{\sqrt{3}}}{5},\frac{{\sqrt{3}}}{3}})$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知双曲线M:$\frac{y^2}{a^2}-\frac{x^2}{b^2}$=1(a>0,b>0)的上焦点为F,上顶点为A,B为虚轴的端点,离心率e=$\frac{{2\sqrt{3}}}{3}$,且S△ABF=1-$\frac{{\sqrt{3}}}{2}$.抛物线N的顶点在坐标原点,焦点为F.
(1)求双曲线M和抛物线N的方程;
(2)设动直线l与抛物线N相切于点P,与抛物线的准线相交于点Q,则以PQ为直径的圆是否恒过y轴上的一个定点?如果经过,试求出该点的坐标,如果不经过,试说明理由.

查看答案和解析>>

同步练习册答案