【题目】设函数,若存在区间,使得在上的值域为,则的取值范围是( )
A. B. C. D.
【答案】D
【解析】
判断f(x)的单调性得出f(x)=k(x+2)在[,+∞)上有两解,作出函数图象,利用导数的意义求出k的范围.
f′(x)=2x﹣lnx+1,f″(x)=2,
∴当x时,f″(x)≥0,
∴f′(x)在[,+∞)上单调递增,
∴f′(x)≥f′()=2﹣ln0,
∴f(x)在[,+∞)上单调递增,
∵[a,b][,+∞),
∴f(x)在[a,b]上单调递增,
∵f(x)在[a,b]上的值域为[k(a+2),k(b+2)],
∴,
∴方程f(x)=k(x+2)在[,+∞)上有两解a,b.
作出y=f(x)与直线y=k(x+2)的函数图象,则两图象有两交点.
若直线y=k(x+2)过点(,ln2),
则k,
若直线y=k(x+2)与y=f(x)的图象相切,设切点为(x0,y0),
则,解得k=1.
∴1<k,
故选:D.
科目:高中数学 来源: 题型:
【题目】如图,在P地正西方向8km的A处和正东方向1km的B处各有一条正北方向的公路AC和BD,现计划在AC和BD路边各修建一个物流中心E和F,为缓解交通压力,决定修建两条互相垂直的公路PE和PF,设
Ⅰ为减少对周边区域的影响,试确定E,F的位置,使与的面积之和最小;
Ⅱ为节省建设成本,求使的值最小时AE和BF的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知,当时,.
(Ⅰ)若函数过点,求此时函数的解析式;
(Ⅱ)若函数只有一个零点,求实数的值;
(Ⅲ)设,若对任意实数,函数在上的最大值与最小值的差不大于1,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线的顶点为原点,其焦点到直线的距离为.设为直线上的点,过点作抛物线的两条切线,其中为切点.
(1) 求抛物线的方程;
(2) 当点为直线上的定点时,求直线的方程;
(3) 当点在直线上移动时,求的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆上一动点,过点作轴,垂足为点,中点为.
(1)当在圆上运动时,求点的轨迹的方程;
(Ⅱ)过点的直线与交于两点,当时,求线段的垂直平分线方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com