精英家教网 > 高中数学 > 题目详情
11.祖暅(公元前5~6世纪)是我国齐梁时代的数学家,是祖冲之的儿子.他提出了一条原理:“幂势既同,则积不容异.”这里的“幂”指水平截面的面积,“势”指高.这句话的意思是:两个等高的几何体若在所有等高处的水平截面的面积相等,则这两个几何体体积相等.设由椭圆$\frac{y^2}{a^2}+\frac{x^2}{b^2}$=1(a>b>0)所围成的平面图形绕y轴旋转一周后,得一橄榄状的几何体(如图)(称为椭球体),课本中介绍了应用祖暅原理求球体体积公式的做法,请类比此法,求出椭球体体积,其体积等于$\frac{4}{3}π×{b^2}a$.

分析 椭圆的长半轴为a,短半轴为b,现构造两个底面半径为b,高为a的圆柱,然后在圆柱内挖去一个以圆柱下底面圆心为顶点,圆柱上底面为底面的圆锥,根据祖暅原理得出椭球的体积.

解答 解:椭圆的长半轴为a,短半轴为b,现构造两个底面半径为b,高为a的圆柱,然后在圆柱内挖去一个以圆柱下底面圆心为顶点,圆柱上底面为底面的圆锥,根据祖暅原理得出椭球的体积
V=2(V圆柱-V圆锥)=$2({π×{b^2}×a-\frac{1}{3}π×{b^2}a})=\frac{4}{3}π×{b^2}a$.
故答案为:$\frac{4}{3}π×{b^2}a$.

点评 本题考查祖暅原理、几何体的体积,考查转化思想,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.设函数$f(x)=sin(2x+φ)(|φ|<\frac{π}{2})$向左平移$\frac{π}{3}$单位后得到的函数是一个偶函数,则φ=-$\frac{π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若函数g(x)满足g(g(x))=n(n∈N)有n+3个解,则称函数g(x)为“复合n+3解”函数.已知函数f(x)=$\left\{\begin{array}{l}{kx+3,x≤0}\\{\frac{{e}^{x-1}}{x}},x>0\end{array}\right.$(其中e是自然对数的底数,e=2.71828…,k∈R),且函数f(x)为“复合5解”函数,则k的取值范围是(  )
A.(-∞,0)B.(-e,e)C.(-1,1)D.(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.以点M(2,0)、N(0,4)为直径的圆的标准方程为(x-1)2+(y-2)2=5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)与抛物线y2=2px(p>0)有相同的焦点F,且双曲线的一条渐近线与抛物线的准线交于点M(-3,t),|MF|=$\frac{{\sqrt{153}}}{2}$,则双曲线的离心率为(  )
A.$\frac{{\sqrt{2}}}{2}$B.$\frac{{\sqrt{3}}}{3}$C.$\frac{{\sqrt{5}}}{2}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=$\frac{1}{2}$ax2-(a2+b)x+alnx(a,b∈R).
(Ⅰ)当b=1时,求函数f(x)的单调区间;
(Ⅱ)当a=-1,b=0时,证明:f(x)+ex>-$\frac{1}{2}{x^2}$-x+1(其中e为自然对数的底数).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知关于x的方程|log4x|=$\frac{1}{{2}^{x}}$有两个实数根(x1,x2),求证:x1x2>$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知等比数列{an}的公比q,前n项的和Sn,对任意的n∈N*,Sn>0恒成立,则公比q的取值范围是(-1,0)∪(0,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若实数x,y满足约束条件$\left\{\begin{array}{l}y≥0\\ y≤x\\ y≤-2x+9\end{array}\right.$,则z=x+3y的最大值等于(  )
A.0B.$\frac{9}{2}$C.12D.27

查看答案和解析>>

同步练习册答案