| A. | 0 | B. | $\frac{9}{2}$ | C. | 12 | D. | 27 |
分析 由约束条件作出可行域,数形结合得到最优解,联立方程组求出最优解的坐标,代入目标函数得答案.
解答 解:由约束条件$\left\{\begin{array}{l}y≥0\\ y≤x\\ y≤-2x+9\end{array}\right.$,作出可行域如图,![]()
联立$\left\{\begin{array}{l}{y=x}\\{y=-2x+9}\end{array}\right.$,解得:A(3,3),
化目标函数z=x+3y为y=-$\frac{1}{3}x$+$\frac{1}{3}z$,
由图可知,当直线y=-$\frac{1}{3}x$+$\frac{1}{3}z$过A时,直线在y轴上的截距最大,z最大.
此时z=3+3×3=12.
故选:C.
点评 本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $?{x_0}∈({0,+∞}),lnx≥2\frac{x-1}{x+1}$ | B. | $?{x_0}∈({0,+∞}),lnx<2\frac{x-1}{x+1}$ | ||
| C. | $?x∈({0,+∞}),lnx<2\frac{x-1}{x+1}$ | D. | 不存在${x_0}∈({0,+∞}),lnx<2\frac{x-1}{x+1}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com