精英家教网 > 高中数学 > 题目详情
15.已知圆C1的圆心在坐标原点O,且与直线l1:$x-\sqrt{2}y+6=0$相切,设点A为圆上一动点,AM⊥x轴于点M,且动点N满足$\overrightarrow{ON}=\frac{1}{2}\overrightarrow{OA}+(\frac{{\sqrt{3}}}{3}-\frac{1}{2})\overrightarrow{OM}$,设动点N的轨迹为曲线C.
(1)求曲线C的方程;
(2)若动直线l2:y=kx+m与曲线C有且仅有一个公共点,过F1(-1,0),F2(1,0)两点分别作F1P⊥l2,F2Q⊥l2,垂足分别为P,Q,且记d1为点F1到直线l2的距离,d2为点F2到直线l2的距离,d3为点P到点Q的距离,试探索(d1+d2)•d3是否存在最值?若存在,请求出最值.

分析 (1)设圆C1:x2+y2=R2,根据圆C1与直线l1相切,求出圆的方程为x2+y2=12,由此利用相关点法能求出曲线C的方程.
(2)将直线l2:y=kx+m代入曲线C的方程3x2+4y2=12中,得(4k2+3)x2+8kmx+4m2-12=0,由此利用根的判别式、韦达定理、直线方程、椭圆性质、弦长公式,结合已知条件能求出(d1+d2)•d3存在最大值,并能求出最大值.

解答 解:(1)设圆C1:x2+y2=R2,根据圆C1与直线l1相切,
得$\frac{6}{\sqrt{1+2}}$R,即R=2$\sqrt{3}$,
∴圆的方程为x2+y2=12,
设A(x0,y0),N(x,y),∵AM⊥x轴于M,∴M(x0,0),
∴(x,y)=$\frac{1}{2}$(x0,y0)+($\frac{\sqrt{3}}{3}-\frac{1}{2}$)(x0-0)=($\frac{\sqrt{3}}{3}{x}_{0},\frac{1}{2}{y}_{0}$),
∴$\left\{\begin{array}{l}{x=\frac{\sqrt{3}}{3}{x}_{0}}\\{y=\frac{1}{2}{y}_{0}}\end{array}\right.$,即$\left\{\begin{array}{l}{{x}_{0}=\sqrt{3}x}\\{{y}_{0}=2y}\end{array}\right.$,
∵点A(x0,y0)为圆C1上的动点,
∴${{x}_{0}}^{2}+{{y}_{0}}^{2}$=12,∴($\sqrt{3}x$)2+(2y)2=12,
∴$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}$=1.
(2)由(1)中知曲线C是椭圆,
将直线l2:y=kx+m代入椭圆C的方程3x2+4y2=12中,得(4k2+3)x2+8kmx+4m2-12=0
由直线l2与椭圆C有且仅有一个公共点知,△=64k2m2-4(4k2+3)(4m2-12)=0,
整理得m2=4k2+3…(7分),且${d_1}=\frac{|m-k|}{{\sqrt{1+{k^2}}}}$,${d_2}=\frac{|m+k|}{{\sqrt{1+{k^2}}}}$,
1°当k≠0时,设直线l2的倾斜角为θ,则d3•|tanθ|=|d1-d2|,即${d_3}=|\frac{{{d_1}-{d_2}}}{k}|$
∴$({d_1}+{d_2}){d_3}=({d_1}+{d_2})|\frac{{{d_1}-{d_2}}}{k}|=|\frac{{{d_1}^2-{d_2}^2}}{k}|=\frac{4|m|}{{1+{k^2}}}$=$\frac{4|m|}{{\frac{{{m^2}-3}}{4}+1}}=\frac{16}{{|m|+\frac{1}{|m|}}}$…(10分)
∵m2=4k2+3∴当k≠0时,$|m|>\sqrt{3}$
∴$|m|+\frac{1}{|m|}>\sqrt{3}+\frac{1}{{\sqrt{3}}}=\frac{{4\sqrt{3}}}{3}$,∴$({d_1}+{d_2}){d_3}<4\sqrt{3}$…(11分)
2°当k=0时,四边形F1F2PQ为矩形,此时${d_1}={d_2}=\sqrt{3}$,d3=2
∴$({d_1}+{d_2}){d_3}=2\sqrt{3}×2=4\sqrt{3}$…(12分)
综上1°、2°可知,(d1+d2)•d3存在最大值,最大值为$4\sqrt{3}$…(13分)

点评 本题综合考查了圆的标准方程、向量的坐标运算,轨迹的求法,直线与椭圆位置关系;本题突出对运算能力、化归转化能力的考查,还要注意对特殊情况的考虑,本题难度大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.若函数g(x)满足g(g(x))=n(n∈N)有n+3个解,则称函数g(x)为“复合n+3解”函数.已知函数f(x)=$\left\{\begin{array}{l}{kx+3,x≤0}\\{\frac{{e}^{x-1}}{x}},x>0\end{array}\right.$(其中e是自然对数的底数,e=2.71828…,k∈R),且函数f(x)为“复合5解”函数,则k的取值范围是(  )
A.(-∞,0)B.(-e,e)C.(-1,1)D.(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知关于x的方程|log4x|=$\frac{1}{{2}^{x}}$有两个实数根(x1,x2),求证:x1x2>$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知等比数列{an}的公比q,前n项的和Sn,对任意的n∈N*,Sn>0恒成立,则公比q的取值范围是(-1,0)∪(0,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.平面向量$\overrightarrow a,\overrightarrow b,\overrightarrow e$满足$|{\overrightarrow e}|=1,\overrightarrow a•\overrightarrow e=1,\overrightarrow b•\overrightarrow e=2,|{\overrightarrow a-\overrightarrow b}|=2$,则$\overrightarrow a•\overrightarrow b$的最小值为$\frac{5}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知${(1+x)^{10}}={a_0}+{a_1}(1-x)+{a_2}{(1-x)^2}+…+{a_{10}}{(1-x)^{10}}$,则a9等于(  )
A.-10B.10C.-20D.20

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知定义域为(-∞,+∞)的偶函数f(x)的一个单调递增区间是(2,6),关于函数y=f(2-x)
①一个递减区间是(4,8)
②一个递增区间是(4,8)
③其图象对称轴方程为x=2      
④其图象对称轴方程为x=-2
其中正确的序号是②③.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若实数x,y满足约束条件$\left\{\begin{array}{l}y≥0\\ y≤x\\ y≤-2x+9\end{array}\right.$,则z=x+3y的最大值等于(  )
A.0B.$\frac{9}{2}$C.12D.27

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.有四人在海边沙滩上发现10颗精致的珍珠,四人约定分配方案:四人先抽签排序①②③④,再由①号提出分配方案,四人表决,至少要有半数的赞成票才算通过,若通过就按此方案分配,否则提出方案的①号淘汰,不再参与分配,接下来由②号提出分配方案,三人表决…,依此类推.假设:1.四人都守信用,愿赌服输;2.提出分配方案的人一定会赞成自己的方案;3.四人都会最大限度争取个人利益.易知若①②都淘汰,则③号的最佳分配方案(能通过且对提出方案者最有利)是(10,0)(表示③、④号分配珍珠数分别是10和0).问①号的最佳分配方案是(  )
A.(4,2,2,2)B.(9,0,1,0)C.(8,0,1,1)D.(7,0,1,2)

查看答案和解析>>

同步练习册答案