精英家教网 > 高中数学 > 题目详情
14.已知圆C:(x+1)2+y2=12及点F(1,0)点,P在圆上,M,N分别为PF、PC上的点,且满足$\overrightarrow{PM}$=$\overrightarrow{MF}$,$\overrightarrow{MN}$•$\overrightarrow{PF}$=0
(1)求N的轨迹W的方程;
(2)是否存在过点F(1,0)的直线l与曲线W相交于A,B两点,并且与曲线W上一点Q,使得四边形OAQB为平行四边形?若存在,求出直线l的方程;若不存在,说明理由.

分析 (1)推导出曲线W是以C,F为焦点的椭圆,且a=$\sqrt{3}$,c=1,b=$\sqrt{2}$,由此能求出曲线C的方程.
(2)设l:x=my+1,代入椭圆方程整理得(2m2+3)y2+4my-4=0,由此利用根的判别式、韦达定理、向量知识、椭圆性质,结合已知条件能求出直线l的方程.

解答 (本小题满分13分)
解:(1)由M,N分别为PF、PC上的点,且满足$\overrightarrow{PM}$=$\overrightarrow{MF}$,$\overrightarrow{MN}$•$\overrightarrow{PF}$=0
得道直线MN为线段PF的中垂线,则|PN|=|NF|,
因此|NC|+|NF|=2$\sqrt{3}$,曲线W是以C,F为焦点的椭圆,且a=$\sqrt{3}$,c=1,b=$\sqrt{2}$,
所以曲线C的方程为$\frac{{x}^{2}}{3}+\frac{{y}^{2}}{2}=1$.…(6分)
(2)设A(x1,y1),B(x2,y2),由题意知l的斜率一定不为0,
故不妨设l:x=my+1,代入椭圆方程整理得(2m2+3)y2+4my-4=0,…(7分)
△=16m2+16(2m2+3)>0,
${y}_{1}+{y}_{2}=-\frac{4m}{2{m}^{2}+3}$,${y}_{1}{y}_{2}=-\frac{4}{2{m}^{2}+3}$,①,…(8分)
假设存在点Q,使得四边形OAQB为平行四边形,其充要条件为$\overrightarrow{OQ}=\overrightarrow{OA}+\overrightarrow{OB}$,
则点Q的坐标为(x1+x2,y1+y2).由点Q在椭圆上,即$\frac{({x}_{1}+{x}_{2})^{2}}{3}$+$\frac{({y}_{1}+{y}_{2})^{2}}{2}$=1,
整理得$2{{x}_{1}}^{2}+3{{y}_{1}}^{2}+2{{x}_{2}}^{2}+3{{y}_{2}}^{2}+4{x}_{1}{x}_{2}$+6y1y2=6,…(10分)
又A,B在椭圆上,即$2{{x}_{1}}^{2}+3{{y}_{1}}^{2}=6,2{{x}_{2}}^{2}+3{{y}_{2}}^{2}=6$,
故2x1x2+3y1y2=-3,②…(11分)
所以x1x2=(my1+1)(my2+1)=m2y1y2+m(y1+y2)+1,
将①②代入上式解得m=$±\frac{\sqrt{2}}{2}$,…(12分)
即直线l的方程是:x=$±\frac{\sqrt{2}}{2}$y+1,即2x$±\sqrt{2}y$-2=0.…(13分)

点评 本题考查曲线方程的求法,考查满足条件的直线方程是否存在的判断与求法,是中档题,解题时要认真审题,注意根的判别式、韦达定理、向量知识、椭圆性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.若实数x,y满足约束条件$\left\{\begin{array}{l}y≥0\\ y≤x\\ y≤-2x+9\end{array}\right.$,则z=x+3y的最大值等于(  )
A.0B.$\frac{9}{2}$C.12D.27

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.有四人在海边沙滩上发现10颗精致的珍珠,四人约定分配方案:四人先抽签排序①②③④,再由①号提出分配方案,四人表决,至少要有半数的赞成票才算通过,若通过就按此方案分配,否则提出方案的①号淘汰,不再参与分配,接下来由②号提出分配方案,三人表决…,依此类推.假设:1.四人都守信用,愿赌服输;2.提出分配方案的人一定会赞成自己的方案;3.四人都会最大限度争取个人利益.易知若①②都淘汰,则③号的最佳分配方案(能通过且对提出方案者最有利)是(10,0)(表示③、④号分配珍珠数分别是10和0).问①号的最佳分配方案是(  )
A.(4,2,2,2)B.(9,0,1,0)C.(8,0,1,1)D.(7,0,1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.函数f(x)=log2x+x的零点所在的一个区间是(  )
A.(0,$\frac{1}{4}$)B.($\frac{1}{4}$,$\frac{1}{2}$)C.($\frac{1}{2}$,1)D.(1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.下面命题判断正确的是(  )
A.若p∨q是真命题,则p,q都是真命题
B.命题“?x0∈R,x02-1>0的否定是“?x∈R,x2-1<0”
C.过平面α外的一点P的直线与平面α所成的角为θ,则这样的直线有无数条
D.△ABC中,“A>B”是“sinA>sinB”的充要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.复数z在复平面内对应的点是(1,-1),则$\overline{z}$=1+i.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.四名教师被分到甲、乙、丙三所学校参加工作,每所学校至少一名教师.
(Ⅰ)求A、B两名教师被同时分配到甲学校的概率;
(Ⅱ)求A、B两名教师不在同一学校的概率;
(Ⅲ)设随机变量ξ为这四名教师中分配到甲学校的人数,求ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.某学校想要调查全校同学是否知道迄今为止获得过诺贝尔物理奖的6位华人的姓名,为此出了一份考卷,该卷共有6个单选题,每题答对得20分,答错、不答得零分,满分120分,阅卷完毕后,校方公布每题答对率如下:
 题号 一 二三  四六 
 答对率 70% 60% 50% 40% 30% 10%
则此次调查全体同学的平均分数是52分.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在抛物线y2=4a(x+a)(a>0),设有过原点O作一直线分别交抛物线于A、B两点,如图所示,试求|OA|•|OB|的最小值.

查看答案和解析>>

同步练习册答案