精英家教网 > 高中数学 > 题目详情
2.函数f(x)=log2x+x的零点所在的一个区间是(  )
A.(0,$\frac{1}{4}$)B.($\frac{1}{4}$,$\frac{1}{2}$)C.($\frac{1}{2}$,1)D.(1,2)

分析 利用根的存在性定理,推出f($\frac{1}{2}$)f(1)<0即可得到结果.

解答 解:∵f(x)=log2x+x,在定义域上单调递增,
∴f($\frac{1}{2}$)=log2$\frac{1}{2}$+$\frac{1}{2}$=-1+$\frac{1}{2}$=-$\frac{1}{2}$<0,
f(1)=log21+1=1>0,
可得f($\frac{1}{2}$)f(1)<0.
∴根据根的存在性定理得f(x)=log2x+x的零点所在的一个区间是($\frac{1}{2}$,1),
故选:C.

点评 本题主要考查函数零点的判断,利用根的存在性定理是解决此类问题的基本方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.已知动点P(x,y)满足:$\left\{\begin{array}{l}{2x+y≤4}\\{x≥0}\\{(\sqrt{{x}^{2}+1}-x)(\sqrt{{y}^{2}+1}+y)≥1}\end{array}\right.$,则x2+y2-6x的最小值为$-\frac{40}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知数列{an}满足a1=1,an+1=$\frac{a_n}{{{a_n}+2}}(n∈{N^*})$,则a10=$\frac{1}{1023}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设实数x,y满足约束条件$\left\{\begin{array}{l}{x+y≥0}\\{x-y≤0}\\{x+3y≤3}\end{array}\right.$,则$\frac{x-y}{\sqrt{{x}^{2}+{y}^{2}}}$的取值范围是[$-\sqrt{2}$,-1)∪(-1,0].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在△ABC中,内角A、B、C所对的边分别是a、b、c,已知A=60°,b=5,c=4.
(1)求a;
(2)求sinBsinC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知直线y=k(x+1)(k>0)与抛物线C:y2=4x相交于A,B两点,O、F分别为C的顶点和焦点,若$\overrightarrow{OA}$=λ$\overrightarrow{FB}$(λ∈R),则k=$\frac{2\sqrt{2}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知圆C:(x+1)2+y2=12及点F(1,0)点,P在圆上,M,N分别为PF、PC上的点,且满足$\overrightarrow{PM}$=$\overrightarrow{MF}$,$\overrightarrow{MN}$•$\overrightarrow{PF}$=0
(1)求N的轨迹W的方程;
(2)是否存在过点F(1,0)的直线l与曲线W相交于A,B两点,并且与曲线W上一点Q,使得四边形OAQB为平行四边形?若存在,求出直线l的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.函数$f(x)=\sqrt{\frac{1}{4}{x^2}-1}+{x^2}-9$的零点个数为(  )
A.0B.2C.4D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.函数f(x)=$\sqrt{3}$sinx•cosx-cos2x+$\frac{1}{2}$,x∈R,将函数f(x)的图象向左平移$\frac{π}{6}$个单位后得函数g(x)的图象,设△ABC的三个角A、B、C的对边分别为a、b、c.
(1)求函数g(x)的单调增区间;
(2)若c=$\sqrt{7}$,f(C)=1,sinB=3sinA,求a、b的值.

查看答案和解析>>

同步练习册答案