精英家教网 > 高中数学 > 题目详情

已知函数f(x)=sin(ωx+?)(ω>0,0<?<π)的图象与直线y=b(-1<b<0)的三个相邻交点的横坐标分别是1,2,4.
(1)求f(x)的解析式,并写出f(x)的单调递减区间;
(2)设g(x)=f(2x)+f(x),求函数g(x)的值域.

解:(1)依题意得,周期T=4-1=3,所以
由对称性知,当=时,函数取得最小值-1,

所以
所以,所以
∵y=sinx的单调减区间是[2kπ+,2kπ+]



所以函数f(x)的单调减区间是Z.
(2)由(1)知
所以
,则根据余弦函数的值域得到t∈[-1,1],
所以
当t=-时,函数取得最小值-,当t=1时,函数取得最大值2,
所以g(x)的值域为
分析:(1)根据函数的图象与横轴的三个交点,做出函数的解析式,根据函数的对称性看出函数的一个点的坐标,代入函数的解析式,求出初相的值,写出函数的解析式,根据正弦函数的解析式写出函数的单调区间.
(2)根据上一问做出的函数的解析式,写出函数g(x)的解析式,对三角函数式进行化简整理,得到关于余弦的二次函数,根据二次函数的最值的求法得到结果.
点评:本题考查三角函数的解析式和有关性质,本题解题的关键是正确求出函数的解析式,再进行后面的单调区间和值域的求法,这种题目是高考卷中每一年都要出现,注意题目的开始解析式不要出错,本题是一个中档题目.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=ax+bsinx,当x=
π
3
时,取得极小值
π
3
-
3

(1)求a,b的值;
(2)对任意x1x2∈[-
π
3
π
3
]
,不等式f(x1)-f(x2)≤m恒成立,试求实数m的取值范围;
(3)设直线l:y=g(x),曲线S:y=F(x),若直线l与曲线S同时满足下列两个条件:①直线l与曲线S相切且至少有两个切点;②对任意x∈R都有g(x)≥F(x),则称直线l与曲线S的“上夹线”.观察下图:

根据上图,试推测曲线S:y=mx-nsinx(n>0)的“上夹线”的方程,并作适当的说明.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-blnx在(1,2]是增函数,g(x)=x-b
x
在(0,1)为减函数.
(1)求b的值;
(2)设函数φ(x)=2ax-
1
x2
是区间(0,1]上的增函数,且对于(0,1]内的任意两个变量s、t,f(s)≥?(t)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=cos( 2x+
π
3
)+sin2x.
(Ⅰ)求函数f(x)的最小正周期和值域;
(Ⅱ)在△ABC中,角A、B、C的对边分别为a、b、c,满足2
AC
CB
=
2
ab,c=2
2
,f(A)=
1
2
-
3
4
,求△ABC的面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知矩阵A=
a2
1b
有一个属于特征值1的特征向量
α
=
2
-1

①求矩阵A;
②已知矩阵B=
1-1
01
,点O(0,0),M(2,-1),N(0,2),求△OMN在矩阵AB的对应变换作用下所得到的△O'M'N'的面积.
(2)已知在直角坐标系xOy中,直线l的参数方程为
x=t-3
y=
3
 t
(t为参数),在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,曲线C的极坐标方程为ρ2-4ρco sθ+3=0.
①求直线l普通方程和曲线C的直角坐标方程;
②设点P是曲线C上的一个动点,求它到直线l的距离的取值范围.
(3)已知函数f(x)=|x-1|+|x+1|.
①求不等式f(x)≥3的解集;
②若关于x的不等式f(x)≥a2-a在R上恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
a
2x
+xlnx
,g(x)=x3-x2-x-1.
(1)如果存在x,x∈[0,2],使得g(x)-g(x)≥M,求满足该不等式的最大整数M;
(2)如果对任意的s,t∈[
1
3
,2],都有f(s)≥g(t)成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案