精英家教网 > 高中数学 > 题目详情
8.“sinα=cosα”是“cos2α=0”的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

分析 由cos2α=cos2α-sin2α,即可判断出.

解答 解:由cos2α=cos2α-sin2α,
∴“sinα=cosα”是“cos2α=0”的充分不必要条件.
故选:A.

点评 本题考查了倍角公式、简易逻辑的判定方法,考查了推理能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.如图,三角形PDC所在的平面与长方形ABCD所在的平面垂直,PD=PC=4,AB=6,BC=3.
(1)证明:BC∥平面PDA;
(2)证明:BC⊥PD;
(3)求点C 到平面PDA的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{3},x≤a}\\{{x}^{2},x>a}\end{array}\right.$若存在实数b,使函数g(x)=f(x)-b有两个零点,则a的取值范围是{a|a<0或a>1}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.袋中共有15个除了颜色外完全相同的球,其中有10个白球,5个红球.从袋中任取2个球,所取的2个球中恰有1个白球,1个红球的概率为(  )
A.$\frac{5}{21}$B.$\frac{10}{21}$C.$\frac{11}{21}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.数列{an}满足:a1+2a2+…nan=4-$\frac{n+2}{{2}^{n-1}}$,n∈N+
(1)求a3的值;
(2)求数列{an}的前 n项和Tn
(3)令b1=a1,bn=$\frac{{T}_{n-1}}{n}$+(1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{n}$)an(n≥2),证明:数列{bn}的前n项和Sn满足Sn<2+2lnn.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若抛物线y2=2px(p>0)的准线经过双曲线x2-y2=1的一个焦点,则p=2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知M(x0,y0)是双曲线C:$\frac{{x}^{2}}{2}-{y}^{2}$=1上的一点,F1,F2是C的左、右两个焦点,若$\overrightarrow{M{F}_{1}}•\overrightarrow{M{F}_{2}}$<0,则y0的取值范围是(  )
A.$(-\frac{\sqrt{3}}{3},\frac{\sqrt{3}}{3})$B.$(-\frac{\sqrt{3}}{6},\frac{\sqrt{3}}{6})$C.$(-\frac{2\sqrt{2}}{3},\frac{2\sqrt{2}}{3})$D.$(-\frac{2\sqrt{3}}{3},\frac{2\sqrt{3}}{3})$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.如图,一辆汽车在一条水平的公路上向正西行驶,到A处时测得公路北侧一山顶D在西偏北30°的方向上,行驶600m后到达B处,测得此山顶在西偏北75°的方向上,仰角为30°,则此山的高度CD=100$\sqrt{6}$m.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.如图,设抛物线y2=4x的焦点为F,不经过焦点的直线上有三个不同的点A,B,C,其中点A,B在抛物线上,点C在y轴上,则△BCF与△ACF的面积之比是(  )
A.$\frac{{|{BF}|-1}}{{|{AF}|-1}}$B.$\frac{{{{|{BF}|}^2}-1}}{{{{|{AF}|}^2}-1}}$C.$\frac{{|{BF}|+1}}{{|{AF}|+1}}$D.$\frac{{{{|{BF}|}^2}+1}}{{{{|{AF}|}^2}+1}}$

查看答案和解析>>

同步练习册答案