分析 (1)利用三种方程的转化方法,求直线l与曲线C的普通方程;
(2)直线l的参数方程为$\left\{\begin{array}{l}{x=2+\frac{1}{2}t}\\{y=\frac{\sqrt{3}}{2}t}\end{array}\right.$(t为参数),代入y2=4x,整理可得3t2-8t-32=0,利用参数的几何意义,求|$\frac{1}{|MA|}$-$\frac{1}{|MB|}$|的值.
解答 解:(1)直线l的参数方程为$\left\{\begin{array}{l}{x=2+\frac{1}{2}t}\\{y=\frac{\sqrt{3}}{2}t}\end{array}\right.$(t为参数),消去参数,可得普通方程y=$\sqrt{3}$(x-2);
曲线C的极坐标方程为ρsin2θ-4cosθ=0,直角坐标方程为y2=4x;
(2)直线l的参数方程为$\left\{\begin{array}{l}{x=2+\frac{1}{2}t}\\{y=\frac{\sqrt{3}}{2}t}\end{array}\right.$(t为参数),代入y2=4x,整理可得3t2-8t-32=0,
设A、B对应的参数分别为t1,t2,则t1+t2=$\frac{8}{3}$,t1t2=-$\frac{32}{3}$,
∴|$\frac{1}{|MA|}$-$\frac{1}{|MB|}$|=|$\frac{{t}_{1}+{t}_{2}}{{t}_{1}{t}_{2}}$|=$\frac{1}{4}$.
点评 本题考查的知识点是圆的极坐标方程,直线的参数方程,直线参数方程中参数的几何意义,难度中档.
科目:高中数学 来源: 题型:选择题
| A. | {2,3,4,5} | B. | {2,3} | C. | {2,3,5} | D. | {2,3,4} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源:2017届湖南长沙长郡中学高三上周测十二数学(理)试卷(解析版) 题型:选择题
已知
是定义在
上的偶函数,且在区间
上单调递增,若实数
满足
,则
的取值范围是( )
A.
B.![]()
![]()
C.
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com