已知函数.
(1)试问的值是否为定值?若是,求出该定值;若不是,请说明理由;
(2)定义,其中,求;
(3)在(2)的条件下,令.若不等式对且恒成立,求实数的取值范围.
解析试题分析:(1)根据函数解析式的特点直接代入计算的值;(2)利用(1)中条件的条件,并注意到定义中第项与倒数第项的和这一条件,并利用倒序相加法即可求出的表达式,进而可以求出的值;(3)先利用和之间的关系求出数列的通项公式,然后在不等式中将与含的代数式进行分离,转化为恒成立的问题进行处理,最终利用导数或作差(商)法,通过利用数列的单调性求出的最小值,最终求出实数的取值范围.
试题解析:(1)的值为定值2.
证明如下:
.
(2)由(1)得.
令,则.
因为①,
所以②,
由①+②得,所以.
所以.
(3)由(2)得,所以.
因为当且时,
.
所以当且时,不等式恒成立.
设,则.
当时,,在上单调递减;
当时,,在上单调递增.
因为,所以,
所以当且时,.
由,得,解得.
所以实数的取值范围是.
考点:函数、倒序相加法、导数
科目:高中数学 来源: 题型:解答题
已知函数.
⑴ 求函数的单调区间;
⑵ 如果对于任意的,总成立,求实数的取值范围;
⑶ 是否存在正实数,使得:当时,不等式恒成立?请给出结论并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知是实数,函数,和,分别是的导函数,若在区间上恒成立,则称和在区间上单调性一致.
(Ⅰ)设,若函数和在区间上单调性一致,求实数的取值范围;
(Ⅱ)设且,若函数和在以为端点的开区间上单调性一致,求的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数,(其中,),且函数的图象在点处的切线与函数的图象在点处的切线重合.
(Ⅰ)求实数a,b的值;
(Ⅱ)若,满足,求实数的取值范围;
(Ⅲ)若,试探究与的大小,并说明你的理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com