精英家教网 > 高中数学 > 题目详情
sin34°sin26°-cos34°cos26°的值为
 
考点:两角和与差的正弦函数
专题:三角函数的求值
分析:直接利用两角和差的余弦公式计算求得结果.
解答: 解:sin34°sin26°-cos34°cos26°=-cos(34°+26°)=-cos60°=-
1
2

故答案为:-
1
2
点评:本题主要考查两角和差的余弦公式的应用,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某工厂生产的产品A的直径均位于区间[110,118]内(单位:mm).若生产一件产品A的直径位于区间[110,112],[112,114],[114,116],[116,118]内该厂可获利分别为10,20,30,10(单位:元),现从该厂生产的产品A中随机100件测量它们的直径,得到如图所示的频率分布直方图.
(Ⅰ)求a的值,并估计该厂生产一件A产品的平均利润;
(Ⅱ)现用分层抽样法从直径位于区间[112,116)内的产品中随机抽取一个容量为5的样
本,再从样本中随机抽取两件产品进行检测,求两件产品中至少有一件产品的直径位于区间[114,116)内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

在如图所示的程序框图中,若输入S=0,则输出S的值为
 

 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x∈R,符号[x]表示不超过x的最大整数,若函数f(x)=
[x]
x
-a(x>0)有且仅有3个零点,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若对满足不等式组
y≥1
y≤2x
2x+3y≤12
的任意实数x,y,都有2x+y≥k成立,则实数k的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知:△AOB中,∠AOB=90°,AO=h,OB=r,如图所示,先将△AOB绕AO所在直线旋转一周得到一个圆锥,再在该圆锥内旋转一个长宽都为
2
,高DD1=1的长方体CDEF-C1D1E1F1.若该长方体的顶点C,D,E,F都在圆锥的底面上,且顶点C1,D1,E1,F1都在圆锥的侧面上,则h+r的值至少应为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=x2cos2θ-4xsinθ+12对一切实数x均有f(x)>0成立,若0<θ<π,则θ的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知菱形ABCD的边长为a,∠DAB=60°,
EC
=2
DE
,则
AE
DB
的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某产品生产厂家的市场部在对4家商场进行调研时,获得该产品售价x(单位:元)和销售量y(单位:件)之间的四组数据如表:
售价x 4 4.5 5.5 6
销售量y 12 11 10 9
为决策产品的市场指导价,用最小二乘法求得销售量y与售价x之间的线性回归方程y=-1.4x+a,那么方程中的a值为(  )
A、17B、17.5
C、18D、18.5

查看答案和解析>>

同步练习册答案