精英家教网 > 高中数学 > 题目详情
10.若(ax+1)5•(x+2)4=a0(x+2)9+a1(x+2)8+…+a8(x+2)+a9,且a0+a1+a2+…+a8+a9=1024,则a0+a2+a4+…+a8=$\frac{{2}^{10}-1{4}^{5}}{2}$.

分析 令x=-1,可得a0+a1+a2+…+a8+a9=(-a+1)5•(-1+2)4=1024,求出a,再令x=-3,可得-a0+a1-a2+…-a8+a9=(-15+1)5•(-3+2)4=145,两式相减可得a0+a2+a4+…+a8

解答 解:令x=-1,可得a0+a1+a2+…+a8+a9=(-a+1)5•(-1+2)4=1024,
∴a=-3,
令x=-3,可得-a0+a1-a2+…-a8+a9=(-15+1)5•(-3+2)4=145
两式相减可得a0+a2+a4+…+a8=$\frac{{2}^{10}-1{4}^{5}}{2}$.
故答案为:$\frac{{2}^{10}-1{4}^{5}}{2}$.

点评 本题考查二项式的系数和问题,考查赋值法的运用,正确赋值是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.若α=2015°,则与α具有相同终边的最小正角β=215°;与角α具有相同终边的角的集合为{γ|γ=2015°+k•360°,k∈Z}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.求下列各式的值.
(1)lg25+1g2•lg5+1g2;
(2)$\frac{1}{2}$lg$\frac{32}{49}$-$\frac{4}{3}$1g$\sqrt{8}$+1g$\sqrt{245}$;
(3)1og535+2log${\;}_{\frac{1}{2}}$$\sqrt{2}$-log5$\frac{1}{50}$-log514.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知集合A={1,2,$\sqrt{a}$},B={1,a},A∩B=B,则a等于(  )
A.0或$\sqrt{2}$B.0或2C.1或$\sqrt{2}$D.1或2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知sin($\frac{π}{4}$-α)=$\frac{12}{13}$,则cos($\frac{5π}{4}$+α)=(  )
A.-$\frac{12}{13}$B.$\frac{12}{13}$C.$\frac{5}{13}$D.-$\frac{5}{13}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(2,-2).
(1)设向量$\overrightarrow{c}$=4$\overrightarrow{a}$+$\overrightarrow{b}$,求$\overrightarrow{b}$•$\overrightarrow{c}$的值;
(2)若实数λ使向量$\overrightarrow{a}$+λ$\overrightarrow{b}$与$\overrightarrow{a}$垂直,求λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.O是平面上一定点,A,B,C是平面上不共线的三个点,动点P满足$\overrightarrow{OP}$=$\frac{{\overrightarrow{OB}+\overrightarrow{OC}}}{2}$+$λ\overrightarrow{AP}$,且λ≠1,则点P的轨迹一定通过△ABC的重心(填重心,垂心,外心或内心)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=$\frac{bx+c}{x+a}$的图象过原点,以直线x=-1为渐近线,且关于直线x+y=0对称,求函数f(x)的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知△ABC的三边分别为a=7、b=5、c=3,则△ABC的最大内角等于(  )
A.$\frac{π}{3}$B.$\frac{π}{2}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

同步练习册答案