【题目】在菱形
中,
,
为线段
的中点(如图1).将
沿
折起到
的位置,使得平面
平面
,
为线段
的中点(如图2).
![]()
(Ⅰ)求证:
;
(Ⅱ)求证:
平面
;
(Ⅲ)当四棱锥
的体积为
时,求
的值.
【答案】(Ⅰ)见解析. (Ⅱ)见解析. (Ⅲ)
.
【解析】
(Ⅰ)证明OD'⊥AO. 推出OD'⊥平面ABCO. 然后证明OD'⊥BC.(Ⅱ)取P为线段AD'的中点,连接OP,PM;证明四边形OCMP为平行四边形,然后证明CM∥平面AOD';(Ⅲ)说明OD'是四棱锥D'﹣ABCO的高.通过体积公式求解即可.
(Ⅰ)证明:因为在菱形
中,
,
为线段
的中点,
所以
.
因为平面
平面
平面
平面
,
平面
,
所以
平面
.
因为
平面
,
所以
.
(Ⅱ)证明:如图,取
为线段
的中点,连接OP,PM;
因为在
中,
,
分别是线段
,
的中点,
所以
,
.
因为
是线段
的中点,菱形
中,
,
,
所以
.
所以
,
.
所以
,
.
所以四边形
为平行四边形,
所以
,
因为
平面
,
平面
,
所以
平面
;
![]()
(Ⅲ)由(Ⅰ)知
平面
.
所以
是四棱锥
的高,又S=
,
因为
,
所以
.
科目:高中数学 来源: 题型:
【题目】某蔬果经销商销售某种蔬果,售价为每公斤25元,成本为每公斤15元.销售宗旨是当天进货当天销售.如果当天卖不出去,未售出的全部降价以每公斤10元处理完.根据以往的销售情况,得到如图所示的频率分布直方图:
![]()
(1)根据频率分布直方图计算该种蔬果日需求量的平均数
(同一组中的数据用该组区间中点值代表);
(2)该经销商某天购进了250公斤这种蔬果,假设当天的需求量为
公斤
,利润为
元.求
关于
的函数关系式,并结合频率分布直方图估计利润
不小于1750元的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,曲线C1的参数方程为
(
为参数)曲线C2的参数方程为
(
,
为参数)在以O为极点,x轴的正半轴为极轴的极坐标系中,射线l:θ=
与C1,C2各有一个交点.当
=0时,这两个交点间的距离为2,当
=
时,这两个交点重合.
(1)分别说明C1,C2是什么曲线,并求出a与b的值;
(2)设当
=
时,l与C1,C2的交点分别为A1,B1,当
=-
时,l与C1,C2的交点为A2,B2,求四边形A1A2B2B1的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,直角三角形
所在的平面与半圆弧
所在平面相交于
,
,
,
分别为
,
的中点,
是
上异于
,
的点,
.
![]()
(1)证明:平面
平面
;
(2)若点
为半圆弧
上的一个三等分点(靠近点
)求二面角
的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,平面四边形
中,
,
是
,
中点,
,
,
,将
沿对角线
折起至
,使平面
,则四面体
中,下列结论不正确的是( )
![]()
A.
平面![]()
B.异面直线
与
所成的角为![]()
C.异面直线
与
所成的角为![]()
D.直线
与平面
所成的角为![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】
设函数f(x)=alnx﹣bx2(x>0).
(1)若函数f(x)在x=1处于直线
相切,求函数f(x)在
上的最大值;
(2)当b=0时,若不等式f(x)≥m+x对所有的a∈[1,
],x∈[1,e2]都成立,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆M过两点A(1,﹣1),B(﹣1,1),且圆心M在x+y﹣2=0上,
(Ⅰ)求圆M的方程;
(Ⅱ)设P是直线x+y+2=0上的动点.PC,PD是圆M的两条切线,C,D为切点,求四边形PCMD面积的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com