精英家教网 > 高中数学 > 题目详情
如图,正方体ABCD-A′B′C′D′中,M为BC边的中点,点P在底面A′B′C′D′和侧面CDD′C′上运动并且使∠MAC′=∠PAC′,那么点P的轨迹是(  )
分析:以A点为坐标原点建立空间直角坐标系,可求得A,C′,M等点的坐标,从而可求得cos∠MAC′,设设AC′与底面A′B′C′D′所成的角为θ,继而可求得cosθ,比较θ与∠MAC′的大小,利用“正圆锥曲线被与中心轴成θ的平面所截曲线定理”即可得到答案.
解答:解:P点的轨迹实际是一个正圆锥面和两个平面的交线;这个正圆锥面的中心轴即为AC′,顶点为A,顶角的一半即为∠MAC′;
以A点为坐标原点建立空间直角坐标系,则A(0,0,1),C′(1,1,0),M(
1
2
,1,1),
AC′
=(1,1,-1),
AM
=(
1
2
,1,0),
∵cos∠MAC′=
1
2
+1×1
3
×
(
1
2
)
2
+1
=
3
5
=
15
5
=
135
15

设AC′与底面A′B′C′D′所成的角为θ,则cosθ=
|A′C′|
|AC′|
=
2
3
=
6
3
=
150
15
135
15

∴θ<∠MAC′,
∴该正圆锥面和底面A′B′C′D′的交线是双曲线弧;
同理可知,P点在平面CDD′C′的交线是双曲线弧,
故选C.
点评:本题考查正圆锥曲线被与中心轴成θ的平面所截曲线定理,考查分析运算能力,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,正方体ABCD-A1B1C1D1的棱长为a,它的各个顶点都在球O的球面上,问球O的表面积.
(1) 如果球O和这个正方体的六个面都相切,则有S=
 

(2)如果球O和这个正方体的各条棱都相切,则有S=
 

精英家教网

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,正方体ABCD-A1B1C1D1中,E,F分别为BB1和A1D1的中点.证明:向量
A1B
B1C
EF
是共面向量.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,正方体ABCD-A1B1C1D1棱长为8,E、F分别为AD1,CD1中点,G、H分别为棱DA,DC上动点,且EH⊥FG.
(1)求GH长的取值范围;
(2)当GH取得最小值时,求证:EH与FG共面;并求出此时EH与FG的交点P到直线B1B的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,正方体ABCD-A1B1C1D1中,若E、F、G分别为棱BC、C1C、B1C1的中点,O1、O2分别为四边形ADD1A1、A1B1C1D1的中心,则下列各组中的四个点不在同一个平面上的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,正方体ABCD-A1B1C1D1中,E、F、G、H分别是所在棱的三等分点,且BF=DE=C1G=C1H=
13
AB

(1)证明:直线EH与FG共面;
(2)若正方体的棱长为3,求几何体GHC1-EFC的体积.

查看答案和解析>>

同步练习册答案