精英家教网 > 高中数学 > 题目详情

在各项为正的数列{an}中,数列的前n项和Sn满足Sn.
(1) 求a1,a2,a3
(2) 由(1)猜想数列{an}的通项公式;
(3) 求Sn.

(1)a1=1;a2-1,a3(2)an (3)

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

用分析法证明:若,则.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(1)用综合法证明:()
(2)用反证法证明:若均为实数,且求证:中至少有一个大于0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知f(x)=ax(a>1).
(1)证明f(x)在(-1,+∞)上为增函数;
(2)用反证法证明方程f(x)=0没有负数根.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

a>0,b>0,2c>ab,求证:
(1)c2>ab
(2)c<a<c.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

观察以下等式:
sin230°+cos260°+sin 30°·cos 60°=
sin240°+cos270°+sin 40°·cos 70°=
sin215°+cos245°+sin 15°·cos 45°=.

写出反映一般规律的等式,并给予证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

用数学归纳法证明对n∈N都有.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数:
①sin213°+cos217°-sin13°cos17°;
②sin215°+cos215°-sin15°cos15°;
③sin218°+cos212°-sin18°cos12°;
④sin2(-18°)+cos248°-sin(-18°)cos48°;
⑤sin2(-25°)+cos255°-sin(-25°)cos55°.
(1)试从上述五个式子中选择一个,求出这个常数;
(2)根据(1)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

已知复数,则=(     )

A.B.C.D.

查看答案和解析>>

同步练习册答案