精英家教网 > 高中数学 > 题目详情
1.已知f(x)在R为奇函数,f(1)=$\frac{1}{2}$,f(x+2)=f(x)+f(2),则f(6)=(  )
A.$\frac{1}{2}$B.1C.-$\frac{1}{2}$D.3

分析 利用f(x)在R为奇函数,f(1)=$\frac{1}{2}$,f(x+2)=f(x)+f(2),先求出f(2),再求出f(6).

解答 解:由题意,x=-1,f(1)=f(-1)+f(2),∴f(2)=1;
∴f(6)=f(4)+1=f(2)+1+1=3,
故选:D.

点评 本题考查函数的奇偶性,考查赋值法的运用,考查学生的计算能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知|$\overrightarrow{a}$|=4,|$\overrightarrow{b}$|=2,|$\overrightarrow{c}$|=1,且$\overrightarrow{a}$与$\overrightarrow{b}$夹角为120°.
(1)若($\overrightarrow{a}$+λ$\overrightarrow{b}$)⊥(2$\overrightarrow{a}$-3$\overrightarrow{b}$),求λ的值;
(2)求$\overrightarrow{a}$•$\overrightarrow{c}$+$\overrightarrow{b}$•$\overrightarrow{c}$的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知函数f(x)=$\left\{\begin{array}{l}{\frac{2}{x}}&{x>0}\\{x+1}&{x≤0}\end{array}\right.$,若g(x)=f(x)-k有两个不同零点,则实数k的取值范围是(0,1].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若a>1,b<0,且ab+a-b=2$\sqrt{3}$,则ab-a-b的值等于(  )
A.±2$\sqrt{2}$B.2$\sqrt{2}$C.-2$\sqrt{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=aln(x+1)-$\frac{4}{x+1}$+x.
(1)对任意的x∈[$-\frac{1}{2}$,+∞),不等式f(x)≤x恒成立,求实数a的取值范围;
(2)若数列{an}的通项公式是an=1+$\frac{1}{n}$(n∈N*),前n项和是Sn,求证:Sn≥$\frac{2ln(n+1)}{ln2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.函数y=$\frac{1}{4+sinx}-\frac{1}{5+sinx}$的值域为[$\frac{1}{30}$,$\frac{1}{12}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.函数y=2x+1(x<1)的反函数是(  )
A.y=log2(x-1),x∈(1,3)B.y=-1+log2x,x∈(1,3)
C.y=log2(x-1),x∈(1,3]D.y=-1+log2x,x∈(1,3]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若关于x的不等式ax-b>0的解集为(-∞,1),则关于x的不等式(ax+b)(x-2)>0的解为(-1,2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.比较下列各组数的大小.
(1)($\frac{\sqrt{7}}{4}$)-0.1和($\frac{\sqrt{7}}{4}$)-0.2
(2)0.8-2和($\frac{5}{3}$)${\;}^{-\frac{1}{2}}$;
(3)a${\;}^{\frac{1}{3}}$和a${\;}^{\frac{1}{2}}$(a>0,且a≠1)

查看答案和解析>>

同步练习册答案