精英家教网 > 高中数学 > 题目详情
5.对某班60名学生参加毕业考试成绩(成绩均为整数)整理后,画出频率分布直方图,如图所示,则该班学生及格(60分为及格)人数为(  )
A.45B.51C.54D.57

分析 先求出成绩在49.5~59.5的概率,再求出该班学生及格(60分为及格)的概率,从而求出该班学生及格(60分为及格)人数.

解答 解:由图象得:成绩在49.5~59.5的概率为:0.1,
∴该班学生及格(60分为及格)的概率为:0.9,
故该班学生及格(60分为及格)人数为:60×0.9=54,
故选:C.

点评 本题考察了频率分布直方图,考察概率问题,本题是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.设集合A={x|x2≤x},B={x|$\frac{1}{x}$≥1},则A∩B=(  )
A.(-∞,1]B.[0,1]C.(0,1]D.(-∞,0)∪(0,1]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)=$\sqrt{3}$sinωx+cosωx(ω>0)的图象与x轴交点的横坐标构成一个公差为$\frac{π}{2}$的等差数列,把函数f(x)的图象沿x轴向左平移$\frac{π}{6}$个单位,得到函数g(x)的图象.若在区间[0,π]上随机取一个数x,则事件“g(x)≥1”发生的概率为(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{6}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知m,n,l是直线,α、β是平面,下列命题中:
①若l垂直于α内两条直线,则l⊥α;②若l平行于α,则α内可有无数条直线与l平行;
③若m?α,l?β,且l⊥m,则α⊥β;④若m⊥n,n⊥l则m∥l;
⑤若m?α,l?β,且α∥β,则m∥l;正确的命题个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.随机观测生产某种零件的某工厂25名工人的日加工零件数(单位:件),获得数据如下:
30,42,41,36,44,40,37,37,25,45,29,43,31,36,49,34,33,43,38,42,32,34,46,39,36.
根据上述数据得到样本的频率分布表如下:
分组频数频率
[25,30]30.12
(30,35]50.20
(35,40]80.32
(40,45]n1f1
(45,50]n2f2
(1)确定样本频率分布表中n1,n2,f1和f2的值;
(2)根据上述频率分布表,画出样本频率分布直方图;
(3)根据样本频率分布直方图,求在该厂任取4人,至少有1人的日加工零件数落在区间(30,35]的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.甲、乙二人用4张扑克牌(分别是红桃2,红桃3,红桃4,方片4)玩游戏,他们将扑克牌洗匀后,背面朝上放在桌面上,甲先抽,乙后抽,抽出的牌不放回,各抽一张.
(Ⅰ)设(i,j),表示甲乙抽到的牌的数字,如甲抽到红桃2,乙抽到红桃3,记为(2,3),请写出甲乙二人抽到的牌的所有情况;
(Ⅱ)若甲抽到红桃3,则乙抽出的牌面数字比3大的概率是多少?(考点:概率应用)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,AP=AB=2,AD=4,E、F依次是PB、PC的中点.
(1)求直线EC与平面PAD所成的角(结果用反三角函数值表示);
(2)求三棱锥P-AFD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.随机变量X的分布列为
Xx1x2x3
Pp1p2p3
若p1,p2,p3成等差数列,则公差d的取值范围是[-$\frac{1}{3}$,$\frac{1}{3}$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.给出以下五个结论:
①若等比数列{an}满足a1=2,且S3=6,则公比q=-2;
②数列{an}的通项公式an=ncos$\frac{nπ}{2}$+1,前n项和为Sn,则S13=19.
③若数列an=n2+λn(n∈N+)为单调递增数列,则λ取值范围是λ>-2;
④已知数列{an}的通项an=$\frac{3}{2n-11}$,其前n项和为Sn,则使Sn>0的n的最小值为12.
⑤1+$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$+…+$\frac{1}{{n}^{2}}$<2-$\frac{1}{n}$(n≥2)
其中正确结论的序号为②⑤(写出所有正确的序号).

查看答案和解析>>

同步练习册答案