精英家教网 > 高中数学 > 题目详情

【题目】设椭圆,定义椭圆的“相关圆”方程为.若抛物线的焦点与椭圆的一个焦点重合,且椭圆短轴的一个端点和其两个焦点构成直角三角形.

(1)求椭圆的方程和“相关圆”的方程;

(2)过“相关圆”上任意一点的直线与椭圆交于两点.为坐标原点,若,证明原点到直线的距离是定值,并求的取值范围.

【答案】1)椭圆的方程为相关圆的方程为;(2.

【解析】

(1)由已知条件计算出椭圆的方程和“相关圆”的方程

2)直线与椭圆相交,联立方程组,由求出之间关系,然后再表示出点到线的距离公式,即可求出结果

解:(1)因为若抛物线的焦点为与椭圆的一个焦点重合,所以,又因为椭圆短轴的一个端点和其两个焦点构成直角三角形,所以

故椭圆的方程为,“相关圆”的方程为

(2)设

联立方程组

由条件,

所以原点到直线的距离是

为定值

又圆心到直线的距离为,直线与圆有公共点,满足条件

,即,∴

,即,所以,即

综上,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知 表示两条不同的直线, 表示三个不同的平面,给出下列四个命题:

,则

,则

,则

,则

其中正确命题的序号为( )

A. ①② B. ②③ C. ③④ D. ②④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= ,若函数y=f(f(x)﹣a)﹣1有三个零点,则a的取值范围是_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若对满足条件3x+3y+82xyx0y0)的任意xy,(x+y2ax+y+16≥0恒成立,则实数a的取值范围是(  )

A.(﹣8]B.[8+∞C.(﹣10]D.[10+∞

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知公差不为0的等差数列{an},其前n项和为Sn,若S10100a1a2a5成等比数列.

1)求{an}的通项公式;

2bnanan+1+an+an+1+1,求数列的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近期,长沙市公交公司推出湘行一卡通扫码支付乘车活动,活动设置了一段时间的推广期,乘客只需利用手机下载湘行一卡通,再通过扫码即可支付乘车费用.相比传统的支付方式,扫码支付方式极为便利,吸引了越来越多的人使用扫码支付,某线路公交车队统计了活动刚推出一周内每一天使用扫码支付的人次,用表示活动推出的天数,表示每天使用扫码支付的人次(单位:十人次),统计数据如下表所示:

根据以上数据,绘制了散点图.

1)根据散点图判断,在推广期内,均为大于零的常数)哪一个适宜作为扫码支付的人次关于活动推出天数的回归方程类型?(给出判断即可,不必说明理由);

2)根据(1)的判断结果及表中的数据,建立关于的回归方程,并预测活动推出第天使用扫码支付的人次;

3)推广期结束后,车队对乘客的支付方式进行统计,结果如下

支付方式

现金

乘车卡

扫码

比例

假设该线路公交车票价为元,使用现金支付的乘客无优惠,使用乘车卡付的乘客享受折优惠,扫码支付的乘客随机优惠,根据统计结果得知,使用扫码支付的乘客中有的概率享受折优惠,有的概率享受折优惠,有的概率享受折优惠.根据给定数据以事件发生的频率作为相应事件发生的概率,在不考虑其它因素的条件下,求一名乘客一次乘车的平均费用.参考数据:

其中:

参考公式:对于一组数据,其回归直线的斜率和截距的最小二乘估计公式分别为: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线过点(3,-2)且与椭圆4x2+9y2=36有相同的焦点.

(1)求双曲线的标准方程;

(2)若点M在双曲线上,F1,F2为左、右焦点,且|MF1|+|MF2|=6,试判别△MF1F2的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知五边形ABECD由一个直角梯形ABCD与一个等边三角形BCE构成,如图1所示,AB丄BC,AB//CD,且AB=2CD。将梯形ABCD沿着BC折起,如图2所示,且AB丄平面BEC。

(1)求证:平面ABE丄平面ADE;

(2)若AB=BC,求二面角A-DE-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,过的直线交椭圆两点,若的最大值为5,则b的值为( )

A. 1 B. C. D. 2

查看答案和解析>>

同步练习册答案