【题目】设椭圆,定义椭圆的“相关圆”方程为.若抛物线的焦点与椭圆的一个焦点重合,且椭圆短轴的一个端点和其两个焦点构成直角三角形.
(1)求椭圆的方程和“相关圆”的方程;
(2)过“相关圆”上任意一点的直线与椭圆交于两点.为坐标原点,若,证明原点到直线的距离是定值,并求的取值范围.
科目:高中数学 来源: 题型:
【题目】已知, 表示两条不同的直线, , , 表示三个不同的平面,给出下列四个命题:
①, , ,则;
②, , ,则;
③, , ,则;
④, , ,则
其中正确命题的序号为( )
A. ①② B. ②③ C. ③④ D. ②④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若对满足条件3x+3y+8=2xy(x>0,y>0)的任意x、y,(x+y)2﹣a(x+y)+16≥0恒成立,则实数a的取值范围是( )
A.(﹣∞,8]B.[8,+∞)C.(﹣∞,10]D.[10,+∞)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知公差不为0的等差数列{an},其前n项和为Sn,若S10=100,a1,a2,a5成等比数列.
(1)求{an}的通项公式;
(2)bn=anan+1+an+an+1+1,求数列的前n项和Tn.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】近期,长沙市公交公司推出“湘行一卡通”扫码支付乘车活动,活动设置了一段时间的推广期,乘客只需利用手机下载“湘行一卡通”,再通过扫码即可支付乘车费用.相比传统的支付方式,扫码支付方式极为便利,吸引了越来越多的人使用扫码支付,某线路公交车队统计了活动刚推出一周内每一天使用扫码支付的人次,用表示活动推出的天数,表示每天使用扫码支付的人次(单位:十人次),统计数据如下表所示:
根据以上数据,绘制了散点图.
(1)根据散点图判断,在推广期内,与(,均为大于零的常数)哪一个适宜作为扫码支付的人次关于活动推出天数的回归方程类型?(给出判断即可,不必说明理由);
(2)根据(1)的判断结果及表中的数据,建立关于的回归方程,并预测活动推出第天使用扫码支付的人次;
(3)推广期结束后,车队对乘客的支付方式进行统计,结果如下
支付方式 | 现金 | 乘车卡 | 扫码 |
比例 |
假设该线路公交车票价为元,使用现金支付的乘客无优惠,使用乘车卡付的乘客享受折优惠,扫码支付的乘客随机优惠,根据统计结果得知,使用扫码支付的乘客中有的概率享受折优惠,有的概率享受折优惠,有的概率享受折优惠.根据给定数据以事件发生的频率作为相应事件发生的概率,在不考虑其它因素的条件下,求一名乘客一次乘车的平均费用.参考数据:
其中:,
参考公式:对于一组数据,,…,…,,其回归直线的斜率和截距的最小二乘估计公式分别为: ,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知双曲线过点(3,-2)且与椭圆4x2+9y2=36有相同的焦点.
(1)求双曲线的标准方程;
(2)若点M在双曲线上,F1,F2为左、右焦点,且|MF1|+|MF2|=6,试判别△MF1F2的形状.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知五边形ABECD由一个直角梯形ABCD与一个等边三角形BCE构成,如图1所示,AB丄BC,AB//CD,且AB=2CD。将梯形ABCD沿着BC折起,如图2所示,且AB丄平面BEC。
(1)求证:平面ABE丄平面ADE;
(2)若AB=BC,求二面角A-DE-B的余弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com