【题目】已知五边形ABECD由一个直角梯形ABCD与一个等边三角形BCE构成,如图1所示,AB丄BC,AB//CD,且AB=2CD。将梯形ABCD沿着BC折起,如图2所示,且AB丄平面BEC。
![]()
(1)求证:平面ABE丄平面ADE;
(2)若AB=BC,求二面角A-DE-B的余弦值.
【答案】(1)见解析;(2)![]()
【解析】
(1)取
的中点
的中点
,连接
,可证得四边形
为平行四边形,可得
.由条件可得到
平面
,从而
平面
,于是可得所证结论成立.(2)建立空间直角坐标系,再求出两个平面的法向量,根据两法向量的夹角可求出二面角的平面角的余弦值.
(1)证明:取
的中点
的中点
,连接
,
则
且
.
∵
且
,
∴
且
,
∴四边形
为平行四边形,
∴
.
∵
平面
,
∴
.
∵img src="http://thumb.zyjl.cn/questionBank/Upload/2019/07/10/08/7c111f09/SYS201907100800588825886904_DA/SYS201907100800588825886904_DA.020.png" width="163" height="19" style="-aw-left-pos:0pt; -aw-rel-hpos:column; -aw-rel-vpos:paragraph; -aw-top-pos:0pt; -aw-wrap-type:inline" />,
∴
平面
.
∵
,
∴
平面
,
∵
平面
,
∴平面
平面
.
(Ⅱ)过
作
于
.
∵
平面
,
∴
.
又
,
∴
平面
.
以
为坐标原点,
所在的直线分别为
轴、
轴,过
且平行于
的直线为
轴建立如图所示的空间直角坐标系.
![]()
设
,则![]()
∴
.
设平面
的法向量为
,
则有
,即
,
取
得
,则
.
设平面
的法向量为
,
则有
,即
,
取
,得
,则
.
∴
,
又由图可知二面角
的平面角为锐角,
∴二面角
的余弦值为
.
科目:高中数学 来源: 题型:
【题目】如图☆的曲线,其生成方法是(I)将正三角形(图(1))的每边三等分,并以中间的那一条线段为一底边向形外作等边三角形,然后去掉底边,得到图(2);(II)将图(2)的每边三等分,重复上述的作图方法,得到图(3);(III)再按上述方法继续做下去,所得到的曲线称为雪花曲线(Koch Snowflake),
![]()
(1)
(2)
(3)
.
设图(1)的等边三角形的边长为1,并且分别将图(1)、(2)、(3)…中的图形依次记作M1、M2、M3、…
…
(1)设
中的边数为
中每条边的长度为
,写出数列
和
的递推公式与通项公式;
(2)设
的周长为
,
所围成的面积为
,求数列{
}与{
}的通项公式;请问周长
与面积
的极限是否存在?若存在,求出该极限,若不存在,简单说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆
,定义椭圆
的“相关圆”方程为
.若抛物线
的焦点与椭圆
的一个焦点重合,且椭圆
短轴的一个端点和其两个焦点构成直角三角形.
(1)求椭圆
的方程和“相关圆”
的方程;
(2)过“相关圆”
上任意一点
的直线
与椭圆
交于
两点.
为坐标原点,若
,证明原点
到直线
的距离是定值,并求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知一条曲线C在y轴右边,C上每一点到点F(1,0)的距离减去它到y轴距离的差都是1
(1)求曲线C的方程.
(2)是否存在正数m,对于过点M(m,0)且与曲线C有两个交点A,B的任一直线,都有
?若存在,求出m的取值范围,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆C过定点
,且与直线
相切,圆心C的轨迹为E,曲线E与直线l:
(
)相交于A,B两点.
(1)求曲线E的方程;
(2)当
的面积等于
时,求k的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,曲线C的方程为
.以坐标原点为极点,
轴正半轴为极轴建立极坐标系,直线
的极坐标方程为
.
(1)求曲线C的参数方程和直线
的直角坐标方程;
(2)若直线
与
轴和y轴分别交于A,B两点,P为曲线C上的动点,求△PAB面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
的长轴长为4,左、右顶点分别为
,经过点
的动直线与椭圆
相交于不同的两点
(不与点
重合).
(1)求椭圆
的方程及离心率;
(2)求四边形
面积的最大值;
(3)若直线
与直线
相交于点
,判断点
是否位于一条定直线上?若是,写出该直线的方程. (结论不要求证明)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在正方体ABCD-ABCD中,平面
垂直于对角线AC,且平面
截得正方体的六个表面得到截面六边形,记此截面六边形的面积为S,周长为l,则( )
![]()
A. S为定值,l不为定值 B. S不为定值,l为定值
C. S与l均为定值 D. S与l均不为定值
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了了解某市高三学生的身体情况,某健康研究协会对该市高三学生组织了两次体测,其中第一次体测的成绩(满分:100分)的频率分布直方图如下图所示,第二次体测的成绩
.
![]()
(Ⅰ)试通过计算比较两次体测成绩平均分的高低;
(Ⅱ)若该市有高三学生20000人,记体测成绩在70分以上的同学的身体素质为优秀,假设这20000人都参与了第二次体测,试估计第二次体测中身体素质为优秀的人数;
(Ⅲ)以频率估计概率,若在参与第一次体测的学生中随机抽取4人,记这4人成绩在
的人数为
,求
的分布列及数学期望.
附:
,
,
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com