精英家教网 > 高中数学 > 题目详情
2.已知平面上一定点C(2,0)和直线l:x=8,P为该平面上一点,作PQ⊥l,垂足为点Q,且($\overrightarrow{PC}+\frac{1}{2}\overrightarrow{PQ}$)•($\overrightarrow{PC}-\frac{1}{2}$$\overrightarrow{PQ}$)=0,则点P到点C的距离的最大值是6.

分析 设P(x,y),则Q(8,y),利用($\overrightarrow{PC}+\frac{1}{2}\overrightarrow{PQ}$)•($\overrightarrow{PC}-\frac{1}{2}$$\overrightarrow{PQ}$)=0,可得${\overrightarrow{PC}}^{2}$-$\frac{1}{4}{\overrightarrow{PQ}}^{2}$=0,化为:3x2+4y2=48.-4≤x≤4.可得$|\overrightarrow{PC}|$=$\sqrt{(x-2)^{2}+{y}^{2}}$=$\sqrt{(x-2)^{2}+12-\frac{3}{4}{x}^{2}}$,即可得出.

解答 解:设P(x,y),则Q(8,y),∴$\overrightarrow{PC}$=(2-x,-y),$\overrightarrow{PQ}$=(8-x,0).
∵($\overrightarrow{PC}+\frac{1}{2}\overrightarrow{PQ}$)•($\overrightarrow{PC}-\frac{1}{2}$$\overrightarrow{PQ}$)=0,
∴${\overrightarrow{PC}}^{2}$-$\frac{1}{4}{\overrightarrow{PQ}}^{2}$=0,
∴(2-x)2+y2=$\frac{1}{4}$(8-x)2
化为:3x2+4y2=48.
∴-4≤x≤4.
∴$|\overrightarrow{PC}|$=$\sqrt{(x-2)^{2}+{y}^{2}}$=$\sqrt{(x-2)^{2}+12-\frac{3}{4}{x}^{2}}$=$\frac{1}{2}|x-8|$≤$\frac{1}{2}|-4-8|$=6,
∴点P到点C的距离的最大值是6.
故答案为:6.

点评 本题考查了向量数量积运算性质、二次函数的单调性,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.设一次函数f(x)=ax+1,a≠0,若f(-1),f(2),f(1)成等比数列,则a=-$\frac{4}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.等比数列{an}中,已知a2=2,S2=3,则a4的值是(  )
A.2B.4C.6D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设函数f(x)=x2+x|x-a|(x∈[-3,1]).
(1)求函数f(x)的最大值;
(2)若y=2x+4的图象位于函数f(x)图象的上方,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在平面直角坐标系中,已知A($\sqrt{3}$,0),B(0,1),C($\sqrt{3}$,1),则以下命题:
①若点P是△ABC的三边垂直平分线的交点,则$\overrightarrow{PA}$+$\overrightarrow{PB}$=$\overrightarrow{0}$;
②若点P是△ABC的三条中线的交点,则$\overrightarrow{PA}+\overrightarrow{PB}+\overrightarrow{PC}=\overrightarrow{0}$;
③若点P是△ABC三条内角平分线的交点,则$\sqrt{3}\overrightarrow{PA}+\overrightarrow{PB}+2\overrightarrow{PC}$=$\overrightarrow{0}$.
正确的个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.0.000064的六次方根是±0.2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设x,y,z,a,b,c,r>0,证明:$\frac{x+y+a+b}{x+y+a+b+c+r}$+$\frac{y+z+b+c}{y+z+a+b+c+r}$>$\frac{x+z+a+c}{x+z+a+b+c+r}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知2x=3y,则$\frac{x}{y}$=log23.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.下列等成立的是(  )
A.($\frac{n}{m}$)7=n7m${\;}^{\frac{1}{7}}$(m≠n,m≠0)B.$\root{12}{(-3)^{4}}$=(-3)${\;}^{\frac{1}{3}}$
C.$\root{4}{{x}^{3}+{y}^{3}}$=(x+y)${\;}^{\frac{3}{4}}$(x≥0,y≥0)D.$\root{3}{\sqrt{9}}$=3${\;}^{\frac{1}{3}}$

查看答案和解析>>

同步练习册答案