精英家教网 > 高中数学 > 题目详情
2.设变量x,y满足约束条件$\left\{\begin{array}{l}{x+y-2≥0}\\{x-y-2≤0}\\{y≤1}\end{array}\right.$,则目标函数z=x+2y的最小值为2.

分析 先根据条件画出可行域,设z=x+2y,再利用几何意义求最值,将最小值转化为y轴上的截距,只需求出直线z=x+2y,过可行域内的点C(2,0)时的最小值,从而得到z最小值即可.

解答 解:设变量x、y满足约束条件$\left\{\begin{array}{l}{x+y-2≥0}\\{x-y-2≤0}\\{y≤1}\end{array}\right.$,

在坐标系中画出可行域△ABC,A(1,1),B(3,1),C(2,0),
则直线z=x+2y,过可行域内的点C(2,0)时的最小值,
目标函数z=x+2y的最小值为:2.
故答案为:2.

点评 借助于平面区域特性,用几何方法处理代数问题,体现了数形结合思想、化归思想.线性规划中的最优解,通常是利用平移直线法确定.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.已知{an},{bn}均为等差数列,其前n项和分别为Sn,Tn,且$\frac{{S}_{n}}{{T}_{n}}$=$\frac{2n+2}{n+3}$,则$\frac{{a}_{5}}{{b}_{5}}$=$\frac{5}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知函数y=loga(x-1)+3(a>0,a≠1)所过定点的横、纵坐标分别是等差数列{an}的第二项与第三项,若bn=$\frac{1}{{a}_{n}{a}_{n+1}}$,数列{bn}的前n项和为Tn,则T10等于$\frac{10}{11}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.点P的柱坐标为($\sqrt{2}$,$\frac{π}{4}$,1),写出点P直角坐标(1,1,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=(x-2)ex+a(x-1)2有两个零点.
(1)求a的取值范围;
(2)已知 g(x) 图象与 y=f(x) 图象关于x=1对称,证明:当  x<1 时,f(x)<g(x).
(3)设x1,x2是的两个零点,证明:x1+x2<2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.直线y=a分别与函数f(x)=2x+3,g(x)=x+lnx相交于P,Q两点,则|PQ|的最小值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知集合A={x|x=3n+2,n∈N},B={6,8,12,14},则集合A∩B中元素的个数为(  )
A.5B.4C.3D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.函数f(x)=($\sqrt{3}$sinx+cosx)($\sqrt{3}$cosx-sinx)的最小正周期是π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.为了了解学生的体能情况,抽取了某学校同年级部分学生作为样本进行跳绳测试,将所得数据整理后,画出频率分布直方图如图所示,已知图中从左到右前三个小组的频率分别是0.1,0.3,0.4,第四小组的频数为10.
(1)求样本容量n
(2)根据样本频率分布直方图,估计学生跳绳次数的中位数(保留整数).

查看答案和解析>>

同步练习册答案