分析 求出函数的定点,得出a2,a3,解出an,利用列项法求和.
解答 解:∵函数y=loga(x-1)+3(a>0,a≠1)过定点(2,3),
∴a2=2,a3=3,
∴an=n,
∴bn=$\frac{1}{n(n+1)}$=$\frac{1}{n}-\frac{1}{n+1}$,
∴T10=1-$\frac{1}{2}$+$\frac{1}{2}-\frac{1}{3}$+…+$\frac{1}{10}-\frac{1}{11}$=1-$\frac{1}{11}$=$\frac{10}{11}$.
故答案为$\frac{10}{11}$.
点评 本题考查了等差数列的通项公式,列项法求和,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 20.1 | B. | ln$\frac{1}{3}$ | C. | π-1 | D. | 无法确定 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,0) | B. | (-∞,-2) | C. | (-2,0) | D. | (-2,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com