分析 由条件可得$\left\{\begin{array}{l}{\frac{π}{2ω}≥\frac{π}{3}}\\{3ωπ=kπ}\end{array}\right.$,k∈Z,由此求得ω的最大值.
解答 解:由题意知,$\left\{\begin{array}{l}{\frac{π}{2ω}≥\frac{π}{3}}\\{3ωπ=kπ}\end{array}\right.$,即$\left\{\begin{array}{l}{ω≤\frac{3}{2}}\\{ω=\frac{k}{3}}\end{array}\right.$其中 k∈Z,
故有ω的最大值为$\frac{4}{3}$.
故答案为:$\frac{4}{3}$.
点评 本题考查三角函数的图象与性质(单调性及对称性),三角函数除关注求最值外,也适当关注其图象的特征,如周期性、对称性、单调性等,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ①②④ | B. | ①④ | C. | ③④ | D. | ①②③ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | g(x)是奇函数 | B. | g(x)关于直线x=-$\frac{π}{4}$对称 | ||
| C. | g(x)在[$\frac{π}{4}$,$\frac{π}{2}$]上是增函数 | D. | 当x∈[$\frac{π}{6}$,$\frac{2π}{3}$]时,g(x)的值域是[2,1] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com