精英家教网 > 高中数学 > 题目详情
8.已知函数y=sinωx(ω>0)在区间[0,$\left.{\frac{π}{3}}$]上为增函数,且图象关于点(3π,0)对称,则ω的最大值为$\frac{4}{3}$.

分析 由条件可得$\left\{\begin{array}{l}{\frac{π}{2ω}≥\frac{π}{3}}\\{3ωπ=kπ}\end{array}\right.$,k∈Z,由此求得ω的最大值.

解答 解:由题意知,$\left\{\begin{array}{l}{\frac{π}{2ω}≥\frac{π}{3}}\\{3ωπ=kπ}\end{array}\right.$,即$\left\{\begin{array}{l}{ω≤\frac{3}{2}}\\{ω=\frac{k}{3}}\end{array}\right.$其中 k∈Z,
故有ω的最大值为$\frac{4}{3}$.
故答案为:$\frac{4}{3}$.

点评 本题考查三角函数的图象与性质(单调性及对称性),三角函数除关注求最值外,也适当关注其图象的特征,如周期性、对称性、单调性等,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.已知sinα+cosα=$\frac{1}{5}$,则sinαcosα=$-\frac{12}{25}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,已知三棱柱ABC-A1B1C1的侧棱与底面垂直,AA1=AB=AC=l,AB⊥AC,M是CC1的中点,N是BC的中点,点P在直线A1B1上,且满足$\overrightarrow{{A_1}P}$=λ$\overrightarrow{{A_1}{B_1}}$.
(I)当λ≠1时,求证:直线BC1∥面PMN;
( II)当λ=1时,求三棱锥A1-PMN的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知an=$\frac{1}{(\sqrt{n-1}+\sqrt{n})(\sqrt{n}+\sqrt{n+1})(\sqrt{n-1}+\sqrt{n+1})}$,Sn=$\sum_{k=1}^{n}$ak,则S2009=$\frac{1}{2}$($\sqrt{2009}$-$\sqrt{2010}$+1)..

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.下列命题:①函数f(x)=sin2x-cos2x的最小正周期是π;
 ②在等比数列{an}中,若a1=1,a5=4,则a3=±2;
③设函数f(x)=$\frac{x+m}{x+1}$(m≠1),若f($\frac{2t-1}{t}$)有意义,则t≠0;
④平面四边形ABCD中,$\overrightarrow{AB}$+$\overrightarrow{CD}$=$\overrightarrow{0}$,($\overrightarrow{AB}$-$\overrightarrow{AD}$)•$\overrightarrow{AC}$=0,则四边形ABCD是菱形.
其中所有的真命题是:(  )
A.①②④B.①④C.③④D.①②③

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知函数y=loga(x-1)+3(a>0,a≠1)所过定点的横、纵坐标分别是等差数列{an}的第二项与第三项,若bn=$\frac{1}{{a}_{n}{a}_{n+1}}$,数列{bn}的前n项和为Tn,则T10等于$\frac{10}{11}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=$\sqrt{3}$sin?x+cosωx(ω>0)的图象与x轴交点的横坐标依次构成一个公差为$\frac{π}{2}$的等差数列,把函数f(x)的图象沿x轴向左平移$\frac{π}{6}$个单位,得到函数g(x)的图象,则(  )
A.g(x)是奇函数B.g(x)关于直线x=-$\frac{π}{4}$对称
C.g(x)在[$\frac{π}{4}$,$\frac{π}{2}$]上是增函数D.当x∈[$\frac{π}{6}$,$\frac{2π}{3}$]时,g(x)的值域是[2,1]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=(x-2)ex+a(x-1)2有两个零点.
(1)求a的取值范围;
(2)已知 g(x) 图象与 y=f(x) 图象关于x=1对称,证明:当  x<1 时,f(x)<g(x).
(3)设x1,x2是的两个零点,证明:x1+x2<2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.设P,Q分别为圆x2+(y-6)2=2和椭圆$\frac{{x}^{2}}{10}$+y2=1上的点,则P,Q两点间的最大距离是6$\sqrt{2}$.

查看答案和解析>>

同步练习册答案