精英家教网 > 高中数学 > 题目详情
20.已知函数f(x)=$\sqrt{3}$sin?x+cosωx(ω>0)的图象与x轴交点的横坐标依次构成一个公差为$\frac{π}{2}$的等差数列,把函数f(x)的图象沿x轴向左平移$\frac{π}{6}$个单位,得到函数g(x)的图象,则(  )
A.g(x)是奇函数B.g(x)关于直线x=-$\frac{π}{4}$对称
C.g(x)在[$\frac{π}{4}$,$\frac{π}{2}$]上是增函数D.当x∈[$\frac{π}{6}$,$\frac{2π}{3}$]时,g(x)的值域是[2,1]

分析 将函数化简,图象与x轴交点的横坐标依次构成一个公差为$\frac{π}{2}$的等差数列,可知周期为π,由周期求出ω,向左平移$\frac{π}{6}$个单位可得g(x)的解析式,再利用三角函数图象及性质,可得结论.

解答 解:f(x)=$\sqrt{3}$sin?x+cosωx(ω>0),
化简得:f(x)=2sin(?x+$\frac{π}{6}$),
∵图象与x轴交点的横坐标依次构成一个公差为$\frac{π}{2}$的等差数列,可知周期为π
∴T=π=$\frac{2π}{ω}$,解得ω=2.
那么:f(x)=2sin(2x+$\frac{π}{6}$),图象沿x轴向左平移$\frac{π}{6}$个单位,得:2sin[2(x+$\frac{π}{6}$)+$\frac{π}{6}$]=2cos2x.
∴g(x)=2cos2x,故g(x)是偶函数,在区间[0,$\frac{π}{2}$]单调减函数.所以A,C不对.
对称轴方程为x=$\frac{1}{2}kπ$(k=Z),检验B不对.
当x∈[$\frac{π}{6}$,$\frac{2π}{3}$]时,那么2x∈[$\frac{π}{3}$,$\frac{4π}{3}$],g(x)的最大值为1,最小值为-2,故值域为[-2,1].D正确.
故选:D.

点评 本题考查了三角函数的辅助角公式的化简和图象的平移,三角函数的性质的运用能力.属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.下列命题正确的是(  )
A.若$\overrightarrow a•\overrightarrow b=\overrightarrow a•\overrightarrow c$,则$\overrightarrow b=\overrightarrow c$B.若$|{\overrightarrow a+\overrightarrow b}|=|{\overrightarrow a-\overrightarrow b}|$,则$\overrightarrow a•\overrightarrow b=0$
C.若$\overrightarrow a∥\overrightarrow b,\overrightarrow b∥\overrightarrow c$,则$\overrightarrow a∥\overrightarrow c$D.若$\overrightarrow a$与$\overrightarrow b$是单位向量,则$\overrightarrow a•\overrightarrow b=1$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知正方体ABCD-A1B1C1D1的棱长为a,M,N分别是棱AA1,CC1的中点,
(Ⅰ)求正方体ABCD-A1B1C1D1的内切球的半径与外接球的半径之比;
(Ⅱ)求四棱锥A-MB1ND的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知函数y=sinωx(ω>0)在区间[0,$\left.{\frac{π}{3}}$]上为增函数,且图象关于点(3π,0)对称,则ω的最大值为$\frac{4}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.定义函数y=f(x),x∈I,若存在常数M,对于任意x1∈I,存在唯一的x2∈I,使得$\frac{f({x}_{1})+f({x}_{2})}{2}$=M,则称函数f(x)在I上的“均值”为M,已知f(x)=log2x,x∈[1,22017],则函数f(x)=log2x在∈[1,22017]上的“均值”为$\frac{2017}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数f(x)=x+blnx在区间(0,2)上不是单调函数,则b的取值范围是(  )
A.(-∞,0)B.(-∞,-2)C.(-2,0)D.(-2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在等差数列{an}中,a2=4,a1+a5=14,
(1)求数列{an}的通项公式an
(2)求数列{an}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.利用函数的性质(如单调性与奇偶性)来解不等式是我们常用方法,通过下列题组体会此方法的适用范围及应注意什么问题?
(1)已知函数f(x)=x|x-2|,则不等式f($\sqrt{2}$-x)≤f(1)的解集为[-1,+∞).
(2)已知定义在R上的奇函数f(x)在x>0时满足f(x)=x4,且f(x+t)≤4f(x)在x∈[1,16]恒成立,则实数t的最大值是$\sqrt{2}$-1.
(3)已知函数f(x)=$\left\{\begin{array}{l}{2,x>1}\\{(x-1)^{2}+2,x≤1}\end{array}$,则不等式f(1-x2)>f(2x)的解集是{x|x<-1-$\sqrt{2}$ 或 x>-1+$\sqrt{2}$ }.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.定义A?B={y|y=ax,a∈A,x∈B},其中$A=\{\frac{1}{2},2\}$,B={0,1},则A?B中所有元素的积等于1.

查看答案和解析>>

同步练习册答案