精英家教网 > 高中数学 > 题目详情

在△ABC中,∠A、∠B、∠C所对的边长分别是a、b、c.满足2acosC+ccosA=b.则sinA+sinB的最大值是


  1. A.
    数学公式
  2. B.
    1
  3. C.
    数学公式
  4. D.
    数学公式
C
分析:先根据正弦定理把边化成角的正弦代入题设,化简可得SinAcosC=0.因A为三角形内角排除sinA=0,进而可知cosC=0,即C=90°,即sinB=cosA,代入sinA+sinB,通过两角和公式化简成sin(A+)进而得出答案.
解答:∵2acosC+ccosA=b
∴根据正弦定理SinAcosC+sinAcosC+sinCcosA=sinB
∴SinAcosC+sin(A+C)=sinB
∴SinAcosC=0
∵A,B,C为三角形内角,
∴sinA≠0,
∴cosC=0
∴C=90°
∴sinB=cosA
∴sinA+sinB=sinA+cosA=sinA+cosA)=sin(A+)≤
∴sinA+sinB的最大值是)
故答案选C.
点评:本题主要考查正弦定理和三角函数中两角和公式的应用.解决本题的关键是通过正弦定理完成边角互化.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•临沂一模)已知函数f(x)=cos
x
2
-
3
sin
x
2

(I)若x∈[-2π,2π],求函数f(x)的单调减区间;
(Ⅱ)在△ABC中,a,b,c分别为角A,B,C的对边,若f(2A-
2
3
π)=
4
3
,sinB=
5
cosC,a=
2
,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•烟台二模)在△ABC中,a、b、c为角A、B、C所对的三边.已知b2+c2-a2=bc
(1)求角A的值;
(2)若a=
3
,设内角B为x,周长为y,求y=f(x)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•保定一模)在△ABC中,a、b、c分别为∠A、∠B、∠C的对边,三边a、b、c成等差数列,且B=
π
4
,则(cosA一cosC)2的值为
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中角A、B、C的对边分别为a、b、c设向量
m
=(a,cosB),
n
=(b,cosA)且
m
n
m
n

(Ⅰ)若sinA+sinB=
6
2
,求A;
(Ⅱ)若△ABC的外接圆半径为1,且abx=a+b试确定x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,∠A,∠B,∠C所对的边分别为a,b,c,已知a=2,b=
7
,∠B=
π
3
,则△ABC的面积为(  )

查看答案和解析>>

同步练习册答案