精英家教网 > 高中数学 > 题目详情
椭圆C:的左右焦点分别为,若椭圆C上恰好有6个不同的点,使得为等腰三角形,则椭圆C的离心率取值范围是(     )
A.B.C.D.
D

试题分析:6个不同的点有两个为短轴的两个端点,另外4个分别在第一、二、三、四象限,且上下对称左右对称。不妨设在第一象限,,当时,,即,解得,又因为,所以;当时,,即,解得,即。综上可得。故D正确。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

设椭圆的焦点在轴上, 分别是椭圆的左、右焦点,点是椭圆在第一象限内的点,直线轴于点
(1)当时,
(1)若椭圆的离心率为,求椭圆的方程;
(2)当点P在直线上时,求直线的夹角;
(2) 当时,若总有,猜想:当变化时,点是否在某定直线上,若是写出该直线方程(不必求解过程).

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若椭圆的离心率是,则的值为        .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:.
(1)求椭圆C的离心率;
(2)设O为原点,若点A在直线,点B在椭圆C上,且,求线段AB长度的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆C:的左、右焦点为,离心率为,过的直线交C于A、B两点,若的周长为,则C的方程为
A.    B.   C.   D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知椭圆:,过点的直线与椭圆交于两点,若点恰为线段的中点,则直线的方程为           

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C的两焦点分别为,长轴长为6,
⑴求椭圆C的标准方程;
⑵已知过点(0,2)且斜率为1的直线交椭圆C于A 、B两点,求线段AB的长度。.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设椭圆+=1(a>b>0)的左、右焦点分别为F1,F2.点P(a,b)满足|PF2|=|F1F2|.
(1)求椭圆的离心率e;
(2)设直线PF2与椭圆相交于A,B两点,若直线PF2与圆(x+1)2+=16相交于M,N两点,且|MN|=|AB|,求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

抛物线的焦点恰好与椭圆的一个焦点重合,则(  )
A.1B.2C.4D.8

查看答案和解析>>

同步练习册答案