精英家教网 > 高中数学 > 题目详情
已知函数f(x)=loga(
x2+m
+x),(a>0,a≠1)
为奇函数,
1)求实数m的值;
2)求f(x)的反函数f-1(x);
3)若两个函数F(x)与G(x)在[p,q]上恒满足|F(x)-G(x)|>2,则称函数F(x)与G(x)在[p,q]上是分离的.试判断函数f(x)的反函数f-1(x)与g(x)=ax在[1,2]上是否分离?若分离,求出a的取值范围;若不分离,请说明理由.
分析:1)根据f(x)为奇函数可知f(x)+f(-x)=0,解之即可求出m的值;
2)先将x用y表示出来,然后将x与y进行互换,最后根据原函数与反函数的关系即可求反函数;
3)记h(ax)=|f-1(x)-g(x)|=
1
2
(ax+
1
ax
)
,假设f-1(x)与g(x)在[1,2]是分离的,,则h(ax)>2在x∈[1,2]上恒成立,即h(axmin>2,然后根据函数的单调性求出h(ax)的最小值即可.
解答:解:1)f(x)为奇函数⇒f(x)+f(-x)=0⇒m=1
2)ay=
x2+1
+x

∴(ay-x)2=x2+1
即x=
1
2
ay-
1
ay

f-1(x)=
1
2
(ax-
1
ax
)
,x∈R
3)f-1(x)=
1
2
(ax-
1
ax
)

h(ax)=|f-1(x)-g(x)|=
1
2
(ax+
1
ax
)

假设f-1(x)与g(x)在[1,2]是分离的,,则h(ax)>2在x∈[1,2]上恒成立,
即 h(axmin>2.
①当a>1时,x∈[1,2],ax∈[a,a2],h(ax)在ax∈[a,a2]上单调递增,h(ax)min=h(a)=
1
2
(a+
1
a
)>2⇒a>2+
3

②当0<a<1时,x∈[1,2],ax∈[a2,a],h(ax)在ax∈[a2,a]上单调递减,h(ax)min=h(a)=
1
2
(a+
1
a
)>2⇒0<a<2-
3

故a的取值范围是:(0,2-
3
)∪(2+
3
,+∞)
点评:本题主要考查了对数函数图象与性质的综合应用,以及反函数的求解和新定义的理解,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
1
3
x3-
3
2
ax2-(a-3)x+b

(1)若函数f(x)在P(0,f(0))的切线方程为y=5x+1,求实数a,b的值:
(2)当a<3时,令g(x)=
f′(x)
x
,求y=g(x)在[l,2]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
2
x2-alnx
的图象在点P(2,f(2))处的切线方程为l:y=x+b
(1)求出函数y=f(x)的表达式和切线l的方程;
(2)当x∈[
1
e
,e]
时(其中e=2.71828…),不等式f(x)<k恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx,g(x)=
12
x2+a
(a为常数),直线l与函数f(x)、g(x)的图象都相切,且l与函数f(x)的图象的切点的横坐标为1.
(1)求直线l的方程及a的值;
(2)当k>0时,试讨论方程f(1+x2)-g(x)=k的解的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
13
x3+x2+ax

(1)讨论f(x)的单调性;
(2)设f(x)有两个极值点x1,x2,若过两点(x1,f(x1)),(x2,f(x2))的直线l与x轴的交点在曲线y=f(x)上,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3-
32
ax2+b
,a,b为实数,x∈R,a∈R.
(1)当1<a<2时,若f(x)在区间[-1,1]上的最小值、最大值分别为-2、1,求a、b的值;
(2)在(1)的条件下,求经过点P(2,1)且与曲线f(x)相切的直线l的方程;
(3)试讨论函数F(x)=(f′(x)-2x2+4ax+a+1)•ex的极值点的个数.

查看答案和解析>>

同步练习册答案