精英家教网 > 高中数学 > 题目详情

【题目】已知函数f0(x)= (x>0),设fn(x)为fn-1(x)的导数,n∈N*.

(1)求2f1f2的值;

(2)证明:对任意的n∈N*,等式都成立.

【答案】(1);(2)详见解析.

【解析】

(1)由于求两个函数的相除的导数比较麻烦,根据条件和结论先将原函数化为:xf0(x)=sinx,然后两边求导后根据条件两边再求导得:2f1(x)+xf2(x)=﹣sinx,把x= 代入式子求值;

(2)由(1)得,f0(x)+xf1(x)=cosx2f1(x)+xf2(x)=﹣sinx,利用相同的方法再对所得的式子两边再求导,并利用诱导公式对所得式子进行化简、归纳,再进行猜想得到等式,用数学归纳法进行证明等式成立,主要利用假设的条件、诱导公式、求导公式以及题意进行证明,最后再把x=代入所给的式子求解验证.

解: (1)由已知,得f1(x)=f0(x)=

于是f2(x)=f1′(x)==

所以

=-1.

(2)证明:由已知得,xf0(x)=sin x,等式两边分别对x求导,得f0(x)+xf0′(x)=cos x

f0(x)+xf1(x)=cos x.

类似可得

2f1(x)+xf2(x)=-sin x=sin(x+π),

3f2(x)+xf3(x)=-cos x

4f3(x)+xf4(x)=sin x=sin(x+2π).

下面用数学归纳法证明等式nfn-1(x)+xfn(x)=对所有的n∈N*都成立.

(i)当n=1时,由上可知等式成立.

(ii)假设当nk时等式成立,即kfk-1(x)+xfk(x)=.

因为[kfk-1(x)+xfk(x)]′=kfk-1′(x)+fk(x)+xfk′(x)=(k+1)fk(x)+xfk+1(x),

,

所以(k+1)fk(x)+xfk+1(x)=

因此当nk+1时,等式也成立.

综合(i)(ii)可知,等式nfn-1(x)+xfn(x)=对所有的n∈N*都成立.

x ,可得

所以

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某高校健康社团为调查本校大学生每周运动的时长,随机选取了80名学生,调查他们每周运动的总时长(单位:小时),按照6组进行统计,得到男生、女生每周运动的时长的统计如下(表12),规定每周运动15小时以上(含15小时)的称为“运动合格者”,其中每周运动25小时以上(含25小时)的称为“运动达人”.

1:男生

时长

人数

2

8

16

8

4

2

2:女生

时长

人数

0

4

12

12

8

4

1)从每周运动时长不小于20小时的男生中随机选取2人,求选到“运动达人”的概率;

2)根据题目条件,完成下面列联表,并判断能否有99%的把握认为本校大学生是否为“运动合格者”与性别有关.

每周运动的时长小于15小时

每周运动的时长不小于15小时

总计

男生

女生

总计

参考公式:,其中.

参考数据:

0.40

0.25

0.10

0.010

0.708

1.323

2.706

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左顶点 与上顶点的距离为

(Ⅰ)求椭圆的方程和焦点的坐标;

(Ⅱ)点在椭圆上,线段的垂直平分线与轴相交于点,若为等边三角形,求点的横坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】十九大指出中国的电动汽车革命早已展开,通过以新能源汽车替代汽/柴油车,中国正在大力实施一项将重塑全球汽车行业的计划.2018年某企业计划引进新能源汽车生产设备,通过市场分析,全年需投入固定成本2500万元,每生产x(百辆),需另投入成本万元,且.由市场调研知,每辆车售价5万元,且全年内生产的车辆当年能全部销售完.

1)求出2018年的利润Lx)(万元)关于年产量x(百辆)的函数关系式;(利润=销售额-成本)

22018年产量为多少百辆时,企业所获利润最大?并求出最大利润.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在某次数学考试中,抽查了1000名学生的成绩,得到频率分布直方图如图所示,规定85分及其以上为优秀.

1)下表是这次抽查成绩的频数分布表,试求正整数的值;

区间

[7580

[8085

[8590

[9095

[95100]

人数

50

a

350

300

b

2)现在要用分层抽样的方法从这1000人中抽取40人的成绩进行分析,求抽取成绩为优秀的学生人数;

3)在根据(2)抽取的40名学生中,要随机选取2名学生参加座谈会,记其中成绩为优秀的人数为X,求X的分布列与数学期望(即均值).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某少儿游泳队需对队员进行限时的仰卧起坐达标测试.已知队员的测试分数与仰卧起坐

个数之间的关系如下:;测试规则:每位队员最多进行三组测试,每组限时1分钟,当一组测完,测试成绩达到60分或以上时,就以此组测试成绩作为该队员的成绩,无需再进行后续的测试,最多进行三组;根据以往的训练统计,队员“喵儿”在一分钟内限时测试的频率分布直方图如下:

(1)计算值;

(2)以此样本的频率作为概率,求

①在本次达标测试中,“喵儿”得分等于的概率;

②“喵儿”在本次达标测试中可能得分的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若函数有相同的极值点(极值点是指函数取极值时对应的自变量的值),求的值;

2)记.

①若在区间为自然对数底数)上至少存在一点,使得成立,求的取值范围;

②若函数图象存在两条经过原点的切线,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某几何体的三视图如图所示,若该几何体的外接球体积为,则h=(  )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥的一个侧面为等边三角形,且平面平面,四边形是平行四边形,.

1)求证:

2)求二面角的余弦值.

查看答案和解析>>

同步练习册答案