【题目】已知f(x)=2+log3x,x∈[1,9],求y=[f(x)]2+f(x2)的最大值,及y取最大值时x的值.
【答案】当x=3时,函数y=[f(x)]2+f(x2)取得最大值13.
【解析】试题分析:先求f(x)值域得函数定义域,再根据二次函数对称轴与定义区间位置关系得最大值
试题解析:∵f(x)=2+log3x,x∈[1,9],
∴y=[f(x)]2+f(x2)
=(2+log3x)2+(2+log3x2)
=(log3x)2+6log3x+6=(log3x+3)2-3.
∵函数f(x)的定义域为[1,9],
∴要使函数y=[f(x)]2+f(x2)有意义,必须满足
∴1≤x≤3.
令u=log3x,则0≤u≤1.
又∵函数y=(u+3)2-3在[-3,+∞)上是增函数,
∴当u=1,即x=3时,函数y=(u+3)2-3取得最大值13.
故当x=3时,函数y=[f(x)]2+f(x2)取得最大值13.
科目:高中数学 来源: 题型:
【题目】直三棱柱
中,
分别是
的中点, 且
,
(1)证明:
.
(2)棱
上是否存在一点
,使得平面
与平面
所成锐二面角的余弦值为
若存在,说明点
的位置,若不存在,说明理由.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆
:
过椭圆
:
(
)的短轴端点,
,
分别是圆
与椭圆
上任意两点,且线段
长度的最大值为3.
(Ⅰ)求椭圆
的方程;
(Ⅱ)过点
作圆
的一条切线交椭圆
于
,
两点,求
的面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(1)已知函数y=lg(x2+2x+a)的定义域为R,求实数a的取值范围;
(2)已知函数f(x)=lg[(a2-1)x2+(2a+1)x+1],若f(x)的定义域为R,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知二次函数f(x)的最小值为1,且f(0)=f(2)=3.
(1)求f(x)的解析式;
(2)若f(x)在区间[2a,a+1]上不单调,求实数a的取值范围;
(3)在区间[-1,1]上,y=f(x)的图象恒在y=2x+2m+1的图象上方,试确定实数m的范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知命题P:函数
是增函数,命题Q:![]()
(1)写出命题Q的否命题
,并求出实数
的取值范围,使得命题
为真命题;
(2)如果
是真命题,
是假命题,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】学校艺术节对同一类的
,
,
,
四项参赛作品,只评一项一等奖,在评奖揭晓前,甲、乙、丙、丁四位同学对这四项参赛作品预测如下:
甲说:“是
或
作品获得一等奖”;
乙说:“
作品获得一等奖”;
丙说:“
,
两项作品未获得一等奖”;
丁说:“是
作品获得一等奖”.
若这四位同学中只有两位说的话是对的,则获得一等奖的作品是__________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com