精英家教网 > 高中数学 > 题目详情
17.如图,在△ABC中,AB=5,AC=9,若O为△ABC内一点,且满足|$\overrightarrow{OA}$|=|$\overrightarrow{OB}$|=|$\overrightarrow{OC}$|,则$\overrightarrow{AO}$•$\overrightarrow{BC}$的值是28.

分析 如图所示,取BC的中点D,连接OD,AD.则$\overrightarrow{AD}$=$\frac{1}{2}$($\overrightarrow{AB}$+$\overrightarrow{AC}$),OD⊥BC,即$\overrightarrow{OD}$•$\overrightarrow{BC}$=0.于是$\overrightarrow{AO}$•$\overrightarrow{BC}$=($\overrightarrow{AD}$+$\overrightarrow{DO}$)•$\overrightarrow{BC}$=$\overrightarrow{AD}$•$\overrightarrow{BC}$+$\overrightarrow{DO}$•$\overrightarrow{BC}$=$\overrightarrow{AD}$•$\overrightarrow{BC}$=$\frac{1}{2}$($\overrightarrow{AB}$+$\overrightarrow{AC}$)•($\overrightarrow{AC}$-$\overrightarrow{AB}$),化简代入即可得出.

解答 解:由题意,|$\overrightarrow{OA}$|=|$\overrightarrow{OB}$|=|$\overrightarrow{OC}$|,则O是外心.
如图所示,取BC的中点D,连接OD,AD.
则$\overrightarrow{AD}$=$\frac{1}{2}$($\overrightarrow{AB}$+$\overrightarrow{AC}$),OD⊥BC,即$\overrightarrow{OD}$•$\overrightarrow{BC}$=0.
∴$\overrightarrow{AO}$•$\overrightarrow{BC}$=($\overrightarrow{AD}$+$\overrightarrow{DO}$)•$\overrightarrow{BC}$=$\overrightarrow{AD}$•$\overrightarrow{BC}$+$\overrightarrow{DO}$•$\overrightarrow{BC}$=$\overrightarrow{AD}$•$\overrightarrow{BC}$
=$\frac{1}{2}$($\overrightarrow{AB}$+$\overrightarrow{AC}$)•($\overrightarrow{AC}$-$\overrightarrow{AB}$)
=$\frac{1}{2}$($\overrightarrow{AC}$2-$\overrightarrow{AB}$2)=$\frac{1}{2}$(81-25)=28.
故答案为:28.

点评 本题考查了数量积运算性质、向量平行四边形法则、垂经定理、向量垂直与数量积的关系,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.将边长为4正三角形薄片,用平行于底边的两条直线剪成三块(如图所示),这两条平行线间的距离为$\sqrt{3}$,其中间一块是梯形记为ABCD,记$S=\frac{{{{({梯形ABCD的周长})}^2}}}{梯形ABCD的面积}$,则S的最小值为$\frac{32\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=x-alnx,(a∈R).
(1)讨论函数f(x)在定义域内的极值点的个数;
(2)设g(x)=-$\frac{a+1}{x}$,若在[1,e]上存在一点x0,使得f(x0)<g(x0)成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.(1)计算4x${\;}^{\frac{1}{4}}$(-3x${\;}^{\frac{1}{4}}$y${\;}^{-\frac{1}{3}}$)÷[-6(x${\;}^{-\frac{1}{2}}$y${\;}^{-\frac{2}{3}}$)];
(2)$\frac{\sqrt{m}•\root{3}{m}•\root{4}{m}}{(\root{6}{m})^{5}•{m}^{\frac{1}{4}}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在三棱锥P-ABC中,PA=PB=PC=3,AB=$\sqrt{6}$,BC=$\sqrt{3}$,AB⊥BC,E,F为PC的三等分点.
(1)求证:面PAC⊥面ABC.
(2)求:VA-BEF

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若函数f(x)=(x+1)(x2+ax)为奇函数,则a=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.函数f(x)=$\sqrt{1-x}$-$\sqrt{x}$的定义域为(  )
A.[0,1]B.(0,1]C.(0,1)D.(-1,0)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若数列{an}为等差数列.且满足a2+a4+a7+a11=44,则a3+a5+a10=33.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.如果实数x,y 满足条件 $\left\{\begin{array}{l}{x-y+1≥0}\\{2x+y-2≥0}\\{x-1≤0}\end{array}\right.$,则z=$\frac{y}{x}$的最大值为(  )
A.3B.4C.5D.6

查看答案和解析>>

同步练习册答案