精英家教网 > 高中数学 > 题目详情
12.在三棱锥P-ABC中,PA=PB=PC=3,AB=$\sqrt{6}$,BC=$\sqrt{3}$,AB⊥BC,E,F为PC的三等分点.
(1)求证:面PAC⊥面ABC.
(2)求:VA-BEF

分析 (1)取AC中点H,连接PH和BH,由AB⊥BC,即∠ABC=90°,得AH=CH=BH,又PA=PB=PC,可得△PAH≌△PCH≌△PBH,得到PH⊥AC,说明PH⊥面ABC,再由面面垂直的判定得答案;
(2)把VA-BEF转化为VB-AEF的体积,进一步转化为$\frac{1}{9}{V}_{P-ABC}$求解.

解答 证明:(1)取AC中点H,连接PH和BH,

∵AB⊥BC,
∴∠ABC=90°,
∴AH=CH=BH,又PA=PB=PC,
∴△PAH≌△PCH≌△PBH,
在△PAC中PH⊥AC,
∴PH⊥面ABC,
又PH?面PAC,面PAC⊥面ABC;
解:(2)△ABC中$AB=\sqrt{6},BC=\sqrt{3}$,则AC=3,高$h=\frac{{\sqrt{6}•\sqrt{3}}}{3}=\sqrt{2}$,
∴VA-BEF=${V_{B-AEF}}=\frac{1}{3}{S_{△AEF}}•h=\frac{1}{9}{S_{△PAC}}•h$=$\frac{1}{9}×\frac{{\sqrt{3}}}{4}×{3^2}×\sqrt{2}=\frac{{\sqrt{6}}}{4}$.

点评 本题考查平面与平面垂直的判定,考查利用等积法求多面体的体积,考查空间想象能力和思维能力,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.设函数f(x)=sin(2x+φ)+cos(2x+φ)(|φ|<$\frac{π}{2}$)为偶函数,则φ=(  )
A.$\frac{π}{2}$B.$\frac{π}{3}$C.$\frac{π}{4}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知y=f(x)为R上的连续可导的奇函数,当x>0时f′(x)+$\frac{f(x)}{x}$<0,则g(x)=f(x)+$\frac{2}{x}$的零点个数为(  )
A.0B.1C.2D.0或2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.4年一届的欧洲杯的关注度是仅次于世界杯的第二大足球赛事,2016年欧洲杯于2016年6月10日至7月10日在法国境内9座城市的12座球场内举行,共24支国家队参赛,比赛第一阶段是小组赛,每个小组4支国家队,组内任两只球队之间需进行一场较量,采取积分制,获胜一场3分,打平一场1分,输一场0分,每个小组根据积分取得资格进入下一阶段比赛-淘汰赛.
(1)在小组赛阶段,若东道主法国队在所处的A组中,打胜一场概率为$\frac{1}{2}$,打平一场概率为$\frac{1}{3}$,输一场概率为$\frac{1}{6}$,每场比赛输赢互不影响;那么小组赛结束后,法国队积分为3分的概率;
(2)在淘汰赛阶段,每一场比赛必分输赢,当出现平局时采用点球的方式决出胜负;若德国门将诺伊尔扑出点球的成功率为$\frac{1}{3}$,在5次点球中,求他扑出的点球个数X的分布列与期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知角α(-π≤α<π)的终边过点P(sin$\frac{2π}{3}$,cos$\frac{2π}{3}$),则α=$-\frac{π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.如图,在△ABC中,AB=5,AC=9,若O为△ABC内一点,且满足|$\overrightarrow{OA}$|=|$\overrightarrow{OB}$|=|$\overrightarrow{OC}$|,则$\overrightarrow{AO}$•$\overrightarrow{BC}$的值是28.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知正方形ABCD的边长为2,边AB,CD分别为圆柱上下底面的直径,若一蚂蚁从点A沿圆柱的表面爬到点C,则该蚂蚁所走的最短路程为$\sqrt{{π^2}+4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.正三角形ABC的边长为1,设$\overrightarrow{AB}$=$\vec a$,$\overrightarrow{BC}$=$\vec b$,$\overrightarrow{AC}$=$\vec c$,那么$\vec a$•$\vec b$+$\vec b$•$\vec c$+$\vec c$•$\vec a$的值是(  )
A.$\frac{2}{3}$B.$\frac{1}{2}$C.-$\frac{3}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.(1)化简  $\frac{sin3α}{sinα}$-$\frac{cos3α}{cosα}$;
(2)已知tan$\frac{α}{2}$=2,求$\frac{6sinα+cosα}{3sinα-2cosα}$的值.

查看答案和解析>>

同步练习册答案