精英家教网 > 高中数学 > 题目详情
10.若球O内切于棱长为2的正方体,则球O的表面积为4π.

分析 棱长为2的正方体的内切球的半径r=1,由此能求出其表面积.

解答 解:棱长为2的正方体的内切球的半径r=1,
表面积=4πr2=4π.
故答案为4π.

点评 本题考查正方体的内切球的性质和应用,是基础题.解题时要认真审题,仔细解答.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.已知数列{an}满足:a4n-3=1,a4n-1=0,a2n=an,n∈N*,则a2009=1;a2004=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.某几何体的三视图如图所示,则该几何体是(  )
A.棱柱B.圆柱C.棱锥D.圆锥

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.定义在R上的函数f(x)对任意x1,x2(x1≠x2)都有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$<0,且函数y=f(x+1)的图象关于原点对称,若s,t满足不等式f(s2-2s)≤-f(2t-t2+2),则当1≤s≤4时,$\frac{t-2s}{s+t}$的取值范围是(  )
A.[-3,-$\frac{1}{2}$)B.[-3,-$\frac{1}{2}$]C.[-5,-$\frac{1}{2}$)D.[-5,-$\frac{1}{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图
(I)由折线图看出,可用线性回归模型拟合y与t的关系,请用相关系数加以说明;
(II)建立y关于t的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量.
参考数据:$\sum_{i=1}^{7}$yi=9.32,$\sum_{i=1}^{7}$tiyi=40.17,$\sqrt{\sum_{i=1}^{7}({y}_{i}-\overline{y})^{2}}$=0.55,$\sqrt{7}$≈2.646.
参考公式:相关系数r=$\frac{\sum_{i=1}^{n}({t}_{i}-\overline{t})({y}_{i}-\overline{y})}{\sqrt{\sum_{i=1}^{n}({t}_{i}-\overline{t})^{2}\sum_{i=1}^{n}({y}_{u}-\overline{y})^{2}}}$,$\sum_{i=1}^{n}$(ti-$\overline{t}$)(yi-$\overline{y}$)=$\sum_{i=1}^{n}$tiyi-$\overline{y}$•$\sum_{i=1}^{n}$ti-$\overline{t}$•$\sum_{i=1}^{n}$yi+n$\overline{t}$•$\overline{y}$.
回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{a}$+$\stackrel{∧}{b}$t 中斜率和截距的最小二乘估计公式分别为:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}({t}_{u}-\overline{t})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({t}_{i}-\overline{t})^{2}}$,$\stackrel{∧}{a}$=$\stackrel{∧}{y}$-$\stackrel{∧}{b}$$\overline{t}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数y=f(x)满足f(x-1)=2x+3a,且f(a)=7.
(1)求函数f(x)的解析式;
(2)若g(x)=x•f(x)+λf(x)+x在[0,2]上最大值为2,求实数λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.把一个半径为R的实心铁球熔化铸成两个小球(不计损耗),两个小球的半径之比为1:2,则其中较小球半径为(  )
A.$\frac{1}{3}$RB.$\frac{\root{3}{3}}{3}$RC.$\frac{\root{3}{25}}{5}$RD.$\frac{\sqrt{3}}{3}$R

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设集合A={m∈Z|m≤-3或m≥2},B={n∈N|-1≤n<3},则(∁ZA)∩B=(  )
A.{0,1,2}B.{-1,0,1}C.{0,1}D.{-1,0,1,2}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知直线l与圆C:x2+y2+2x-4y+a=0相交于A、B两点,弦AB的中点为M(0,1).
(1)求实数a的取值范围以及直线l的方程;
(2)若圆C上存在动点N使CN=2MN成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案