精英家教网 > 高中数学 > 题目详情
10.已知x+x-1=3,求$\frac{{x}^{\frac{1}{2}}+{x}^{-\frac{1}{2}}}{{x}^{2}+{x}^{-2}+3}$的值.

分析 由x+x-1=3,可得${x}^{\frac{1}{2}}+{x}^{-\frac{1}{2}}$=$\sqrt{x+{x}^{-1}+2}$,x2+x-2=(x+x-12-2.代入即可得出.

解答 解:∵x+x-1=3,
∴${x}^{\frac{1}{2}}+{x}^{-\frac{1}{2}}$=$\sqrt{x+{x}^{-1}+2}$=$\sqrt{5}$,
x2+x-2=(x+x-12-2=32-2=7.
∴$\frac{{x}^{\frac{1}{2}}+{x}^{-\frac{1}{2}}}{{x}^{2}+{x}^{-2}+3}$=$\frac{\sqrt{5}}{7+3}$=$\frac{\sqrt{5}}{10}$.

点评 本题考查了乘法公式、指数幂的运算性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.若tanα=tan$\frac{π}{12}$,则$\frac{cos(α-\frac{π}{12})}{sin(α+\frac{π}{12})}$=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.关于x的二次函数,f(x)=x2-ax+1,x∈[0,1].
(1)求该函数在定义域上的最小值g(a)的解析式;
(2)若该函数最小值为$\frac{1}{2}$,求a值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在△ABC中,A,B,C的对边分别是a,b,c,已知$\frac{cosA-\sqrt{3}cosC}{cosB}=\frac{\sqrt{3}c-a}{b}$.
(1)求$\frac{c}{a}$的值.
(2)若△ABC的面积为$\sqrt{2}$,cosB=$\frac{\sqrt{3}}{3}$,求b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.映射f:{1,2,3}→{1,2,3},若映射满足f[f(x)]=f(x),则这样的映射有10个.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知:一元二次方程y=x2-(tanθ+cotθ)•x+1=0(其中:θ为三角形的一内角)的一个根为x1=2+$\sqrt{3}$.试求:
(1)方程的另一个根;
(2)tanθ+cotθ的值;
(3)sin2θ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.复数(i+i2+i3)(1-i)的实部为-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数y=2|x+2|
(1)画出该函数的图象;
(2)根据函数图象指出函数的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知关于x的二次方程x2+2mx+2m+1=0有两根,其中一根在区间(-2,0)内,另一根在区间(1,2)内,求实数m的取值范围.

查看答案和解析>>

同步练习册答案